| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lspsnat.v |
|
| 2 |
|
lspsnat.z |
|
| 3 |
|
lspsnat.s |
|
| 4 |
|
lspsnat.n |
|
| 5 |
|
n0 |
|
| 6 |
|
simprl |
|
| 7 |
|
simpl1 |
|
| 8 |
|
lveclmod |
|
| 9 |
7 8
|
syl |
|
| 10 |
|
simpl2 |
|
| 11 |
|
simprr |
|
| 12 |
11
|
eldifad |
|
| 13 |
3 4 9 10 12
|
ellspsn5 |
|
| 14 |
|
0ss |
|
| 15 |
14
|
a1i |
|
| 16 |
|
simpl3 |
|
| 17 |
|
ssdif |
|
| 18 |
17
|
ad2antrl |
|
| 19 |
18 11
|
sseldd |
|
| 20 |
|
uncom |
|
| 21 |
|
un0 |
|
| 22 |
20 21
|
eqtri |
|
| 23 |
22
|
fveq2i |
|
| 24 |
23
|
a1i |
|
| 25 |
2 4
|
lsp0 |
|
| 26 |
9 25
|
syl |
|
| 27 |
24 26
|
difeq12d |
|
| 28 |
19 27
|
eleqtrrd |
|
| 29 |
1 3 4
|
lspsolv |
|
| 30 |
7 15 16 28 29
|
syl13anc |
|
| 31 |
|
uncom |
|
| 32 |
|
un0 |
|
| 33 |
31 32
|
eqtri |
|
| 34 |
33
|
fveq2i |
|
| 35 |
30 34
|
eleqtrdi |
|
| 36 |
13 35
|
sseldd |
|
| 37 |
3 4 9 10 36
|
ellspsn5 |
|
| 38 |
6 37
|
eqssd |
|
| 39 |
38
|
expr |
|
| 40 |
39
|
exlimdv |
|
| 41 |
5 40
|
biimtrid |
|
| 42 |
41
|
necon1bd |
|
| 43 |
|
ssdif0 |
|
| 44 |
42 43
|
imbitrrdi |
|
| 45 |
|
simpl1 |
|
| 46 |
45 8
|
syl |
|
| 47 |
|
simpl2 |
|
| 48 |
2 3
|
lssle0 |
|
| 49 |
46 47 48
|
syl2anc |
|
| 50 |
44 49
|
sylibd |
|
| 51 |
50
|
orrd |
|