Metamath Proof Explorer


Theorem lspsncv0

Description: The span of a singleton covers the zero subspace, using Definition 3.2.18 of PtakPulmannova p. 68 for "covers".) (Contributed by NM, 12-Aug-2014) (Revised by AV, 13-Jul-2022)

Ref Expression
Hypotheses lspsncv0.v V=BaseW
lspsncv0.z 0˙=0W
lspsncv0.s S=LSubSpW
lspsncv0.n N=LSpanW
lspsncv0.w φWLVec
lspsncv0.x φXV
Assertion lspsncv0 φ¬yS0˙yyNX

Proof

Step Hyp Ref Expression
1 lspsncv0.v V=BaseW
2 lspsncv0.z 0˙=0W
3 lspsncv0.s S=LSubSpW
4 lspsncv0.n N=LSpanW
5 lspsncv0.w φWLVec
6 lspsncv0.x φXV
7 df-pss 0˙y0˙y0˙y
8 simpr 0˙y0˙y0˙y
9 nesym 0˙y¬y=0˙
10 8 9 sylib 0˙y0˙y¬y=0˙
11 7 10 sylbi 0˙y¬y=0˙
12 5 ad2antrr φySyNXWLVec
13 simplr φySyNXyS
14 6 ad2antrr φySyNXXV
15 simpr φySyNXyNX
16 1 2 3 4 lspsnat WLVecySXVyNXy=NXy=0˙
17 12 13 14 15 16 syl31anc φySyNXy=NXy=0˙
18 17 orcomd φySyNXy=0˙y=NX
19 18 ord φySyNX¬y=0˙y=NX
20 19 ex φySyNX¬y=0˙y=NX
21 20 com23 φyS¬y=0˙yNXy=NX
22 npss ¬yNXyNXy=NX
23 21 22 syl6ibr φyS¬y=0˙¬yNX
24 11 23 syl5 φyS0˙y¬yNX
25 24 ralrimiva φyS0˙y¬yNX
26 ralinexa yS0˙y¬yNX¬yS0˙yyNX
27 25 26 sylib φ¬yS0˙yyNX