| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lspsncv0.v |
|- V = ( Base ` W ) |
| 2 |
|
lspsncv0.z |
|- .0. = ( 0g ` W ) |
| 3 |
|
lspsncv0.s |
|- S = ( LSubSp ` W ) |
| 4 |
|
lspsncv0.n |
|- N = ( LSpan ` W ) |
| 5 |
|
lspsncv0.w |
|- ( ph -> W e. LVec ) |
| 6 |
|
lspsncv0.x |
|- ( ph -> X e. V ) |
| 7 |
|
df-pss |
|- ( { .0. } C. y <-> ( { .0. } C_ y /\ { .0. } =/= y ) ) |
| 8 |
|
simpr |
|- ( ( { .0. } C_ y /\ { .0. } =/= y ) -> { .0. } =/= y ) |
| 9 |
|
nesym |
|- ( { .0. } =/= y <-> -. y = { .0. } ) |
| 10 |
8 9
|
sylib |
|- ( ( { .0. } C_ y /\ { .0. } =/= y ) -> -. y = { .0. } ) |
| 11 |
7 10
|
sylbi |
|- ( { .0. } C. y -> -. y = { .0. } ) |
| 12 |
5
|
ad2antrr |
|- ( ( ( ph /\ y e. S ) /\ y C_ ( N ` { X } ) ) -> W e. LVec ) |
| 13 |
|
simplr |
|- ( ( ( ph /\ y e. S ) /\ y C_ ( N ` { X } ) ) -> y e. S ) |
| 14 |
6
|
ad2antrr |
|- ( ( ( ph /\ y e. S ) /\ y C_ ( N ` { X } ) ) -> X e. V ) |
| 15 |
|
simpr |
|- ( ( ( ph /\ y e. S ) /\ y C_ ( N ` { X } ) ) -> y C_ ( N ` { X } ) ) |
| 16 |
1 2 3 4
|
lspsnat |
|- ( ( ( W e. LVec /\ y e. S /\ X e. V ) /\ y C_ ( N ` { X } ) ) -> ( y = ( N ` { X } ) \/ y = { .0. } ) ) |
| 17 |
12 13 14 15 16
|
syl31anc |
|- ( ( ( ph /\ y e. S ) /\ y C_ ( N ` { X } ) ) -> ( y = ( N ` { X } ) \/ y = { .0. } ) ) |
| 18 |
17
|
orcomd |
|- ( ( ( ph /\ y e. S ) /\ y C_ ( N ` { X } ) ) -> ( y = { .0. } \/ y = ( N ` { X } ) ) ) |
| 19 |
18
|
ord |
|- ( ( ( ph /\ y e. S ) /\ y C_ ( N ` { X } ) ) -> ( -. y = { .0. } -> y = ( N ` { X } ) ) ) |
| 20 |
19
|
ex |
|- ( ( ph /\ y e. S ) -> ( y C_ ( N ` { X } ) -> ( -. y = { .0. } -> y = ( N ` { X } ) ) ) ) |
| 21 |
20
|
com23 |
|- ( ( ph /\ y e. S ) -> ( -. y = { .0. } -> ( y C_ ( N ` { X } ) -> y = ( N ` { X } ) ) ) ) |
| 22 |
|
npss |
|- ( -. y C. ( N ` { X } ) <-> ( y C_ ( N ` { X } ) -> y = ( N ` { X } ) ) ) |
| 23 |
21 22
|
imbitrrdi |
|- ( ( ph /\ y e. S ) -> ( -. y = { .0. } -> -. y C. ( N ` { X } ) ) ) |
| 24 |
11 23
|
syl5 |
|- ( ( ph /\ y e. S ) -> ( { .0. } C. y -> -. y C. ( N ` { X } ) ) ) |
| 25 |
24
|
ralrimiva |
|- ( ph -> A. y e. S ( { .0. } C. y -> -. y C. ( N ` { X } ) ) ) |
| 26 |
|
ralinexa |
|- ( A. y e. S ( { .0. } C. y -> -. y C. ( N ` { X } ) ) <-> -. E. y e. S ( { .0. } C. y /\ y C. ( N ` { X } ) ) ) |
| 27 |
25 26
|
sylib |
|- ( ph -> -. E. y e. S ( { .0. } C. y /\ y C. ( N ` { X } ) ) ) |