Metamath Proof Explorer


Theorem ralinexa

Description: A transformation of restricted quantifiers and logical connectives. (Contributed by NM, 4-Sep-2005)

Ref Expression
Assertion ralinexa
|- ( A. x e. A ( ph -> -. ps ) <-> -. E. x e. A ( ph /\ ps ) )

Proof

Step Hyp Ref Expression
1 imnan
 |-  ( ( ph -> -. ps ) <-> -. ( ph /\ ps ) )
2 1 ralbii
 |-  ( A. x e. A ( ph -> -. ps ) <-> A. x e. A -. ( ph /\ ps ) )
3 ralnex
 |-  ( A. x e. A -. ( ph /\ ps ) <-> -. E. x e. A ( ph /\ ps ) )
4 2 3 bitri
 |-  ( A. x e. A ( ph -> -. ps ) <-> -. E. x e. A ( ph /\ ps ) )