Description: A transformation of restricted quantifiers and logical connectives. (Contributed by NM, 4-Sep-2005)
Ref | Expression | ||
---|---|---|---|
Assertion | ralinexa | |- ( A. x e. A ( ph -> -. ps ) <-> -. E. x e. A ( ph /\ ps ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imnan | |- ( ( ph -> -. ps ) <-> -. ( ph /\ ps ) ) |
|
2 | 1 | ralbii | |- ( A. x e. A ( ph -> -. ps ) <-> A. x e. A -. ( ph /\ ps ) ) |
3 | ralnex | |- ( A. x e. A -. ( ph /\ ps ) <-> -. E. x e. A ( ph /\ ps ) ) |
|
4 | 2 3 | bitri | |- ( A. x e. A ( ph -> -. ps ) <-> -. E. x e. A ( ph /\ ps ) ) |