Metamath Proof Explorer


Theorem psssstrd

Description: Transitivity involving subclass and proper subclass inclusion. Deduction form of psssstr . (Contributed by David Moews, 1-May-2017)

Ref Expression
Hypotheses psssstrd.1 φAB
psssstrd.2 φBC
Assertion psssstrd φAC

Proof

Step Hyp Ref Expression
1 psssstrd.1 φAB
2 psssstrd.2 φBC
3 psssstr ABBCAC
4 1 2 3 syl2anc φAC