Metamath Proof Explorer


Theorem psssstrd

Description: Transitivity involving subclass and proper subclass inclusion. Deduction form of psssstr . (Contributed by David Moews, 1-May-2017)

Ref Expression
Hypotheses psssstrd.1
|- ( ph -> A C. B )
psssstrd.2
|- ( ph -> B C_ C )
Assertion psssstrd
|- ( ph -> A C. C )

Proof

Step Hyp Ref Expression
1 psssstrd.1
 |-  ( ph -> A C. B )
2 psssstrd.2
 |-  ( ph -> B C_ C )
3 psssstr
 |-  ( ( A C. B /\ B C_ C ) -> A C. C )
4 1 2 3 syl2anc
 |-  ( ph -> A C. C )