Metamath Proof Explorer


Theorem lsator0sp

Description: The span of a vector is either an atom or the zero subspace. (Contributed by NM, 15-Mar-2015)

Ref Expression
Hypotheses lsator0sp.v V = Base W
lsator0sp.n N = LSpan W
lsator0sp.o 0 ˙ = 0 W
lsator0sp.a A = LSAtoms W
isator0sp.w φ W LMod
isator0sp.x φ X V
Assertion lsator0sp φ N X A N X = 0 ˙

Proof

Step Hyp Ref Expression
1 lsator0sp.v V = Base W
2 lsator0sp.n N = LSpan W
3 lsator0sp.o 0 ˙ = 0 W
4 lsator0sp.a A = LSAtoms W
5 isator0sp.w φ W LMod
6 isator0sp.x φ X V
7 1 2 3 4 5 6 lsatspn0 φ N X A X 0 ˙
8 7 biimprd φ X 0 ˙ N X A
9 8 necon1bd φ ¬ N X A X = 0 ˙
10 1 3 2 lspsneq0 W LMod X V N X = 0 ˙ X = 0 ˙
11 5 6 10 syl2anc φ N X = 0 ˙ X = 0 ˙
12 9 11 sylibrd φ ¬ N X A N X = 0 ˙
13 12 orrd φ N X A N X = 0 ˙