| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lsatspn0.v |
|- V = ( Base ` W ) |
| 2 |
|
lsatspn0.n |
|- N = ( LSpan ` W ) |
| 3 |
|
lsatspn0.o |
|- .0. = ( 0g ` W ) |
| 4 |
|
lsatspn0.a |
|- A = ( LSAtoms ` W ) |
| 5 |
|
isateln0.w |
|- ( ph -> W e. LMod ) |
| 6 |
|
isateln0.x |
|- ( ph -> X e. V ) |
| 7 |
5
|
adantr |
|- ( ( ph /\ ( N ` { X } ) e. A ) -> W e. LMod ) |
| 8 |
|
simpr |
|- ( ( ph /\ ( N ` { X } ) e. A ) -> ( N ` { X } ) e. A ) |
| 9 |
3 4 7 8
|
lsatn0 |
|- ( ( ph /\ ( N ` { X } ) e. A ) -> ( N ` { X } ) =/= { .0. } ) |
| 10 |
|
sneq |
|- ( X = .0. -> { X } = { .0. } ) |
| 11 |
10
|
fveq2d |
|- ( X = .0. -> ( N ` { X } ) = ( N ` { .0. } ) ) |
| 12 |
11
|
adantl |
|- ( ( ( ph /\ ( N ` { X } ) e. A ) /\ X = .0. ) -> ( N ` { X } ) = ( N ` { .0. } ) ) |
| 13 |
7
|
adantr |
|- ( ( ( ph /\ ( N ` { X } ) e. A ) /\ X = .0. ) -> W e. LMod ) |
| 14 |
3 2
|
lspsn0 |
|- ( W e. LMod -> ( N ` { .0. } ) = { .0. } ) |
| 15 |
13 14
|
syl |
|- ( ( ( ph /\ ( N ` { X } ) e. A ) /\ X = .0. ) -> ( N ` { .0. } ) = { .0. } ) |
| 16 |
12 15
|
eqtrd |
|- ( ( ( ph /\ ( N ` { X } ) e. A ) /\ X = .0. ) -> ( N ` { X } ) = { .0. } ) |
| 17 |
16
|
ex |
|- ( ( ph /\ ( N ` { X } ) e. A ) -> ( X = .0. -> ( N ` { X } ) = { .0. } ) ) |
| 18 |
17
|
necon3d |
|- ( ( ph /\ ( N ` { X } ) e. A ) -> ( ( N ` { X } ) =/= { .0. } -> X =/= .0. ) ) |
| 19 |
9 18
|
mpd |
|- ( ( ph /\ ( N ` { X } ) e. A ) -> X =/= .0. ) |
| 20 |
5
|
adantr |
|- ( ( ph /\ X =/= .0. ) -> W e. LMod ) |
| 21 |
6
|
adantr |
|- ( ( ph /\ X =/= .0. ) -> X e. V ) |
| 22 |
|
simpr |
|- ( ( ph /\ X =/= .0. ) -> X =/= .0. ) |
| 23 |
|
eldifsn |
|- ( X e. ( V \ { .0. } ) <-> ( X e. V /\ X =/= .0. ) ) |
| 24 |
21 22 23
|
sylanbrc |
|- ( ( ph /\ X =/= .0. ) -> X e. ( V \ { .0. } ) ) |
| 25 |
1 2 3 4 20 24
|
lsatlspsn |
|- ( ( ph /\ X =/= .0. ) -> ( N ` { X } ) e. A ) |
| 26 |
19 25
|
impbida |
|- ( ph -> ( ( N ` { X } ) e. A <-> X =/= .0. ) ) |