Step |
Hyp |
Ref |
Expression |
1 |
|
dih0.z |
⊢ 0 = ( 0. ‘ 𝐾 ) |
2 |
|
dih0.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
3 |
|
dih0.i |
⊢ 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
dih0.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
5 |
|
dih0.o |
⊢ 𝑂 = ( 0g ‘ 𝑈 ) |
6 |
|
id |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
7 |
|
hlop |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ OP ) |
8 |
7
|
adantr |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → 𝐾 ∈ OP ) |
9 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
10 |
9 1
|
op0cl |
⊢ ( 𝐾 ∈ OP → 0 ∈ ( Base ‘ 𝐾 ) ) |
11 |
8 10
|
syl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → 0 ∈ ( Base ‘ 𝐾 ) ) |
12 |
9 2
|
lhpbase |
⊢ ( 𝑊 ∈ 𝐻 → 𝑊 ∈ ( Base ‘ 𝐾 ) ) |
13 |
|
eqid |
⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) |
14 |
9 13 1
|
op0le |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑊 ∈ ( Base ‘ 𝐾 ) ) → 0 ( le ‘ 𝐾 ) 𝑊 ) |
15 |
7 12 14
|
syl2an |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → 0 ( le ‘ 𝐾 ) 𝑊 ) |
16 |
|
eqid |
⊢ ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) |
17 |
9 13 2 3 16
|
dihvalb |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 0 ∈ ( Base ‘ 𝐾 ) ∧ 0 ( le ‘ 𝐾 ) 𝑊 ) ) → ( 𝐼 ‘ 0 ) = ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ 0 ) ) |
18 |
6 11 15 17
|
syl12anc |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( 𝐼 ‘ 0 ) = ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ 0 ) ) |
19 |
1 2 16 4 5
|
dib0 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ 0 ) = { 𝑂 } ) |
20 |
18 19
|
eqtrd |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( 𝐼 ‘ 0 ) = { 𝑂 } ) |