Metamath Proof Explorer


Theorem dih0

Description: The value of isomorphism H at the lattice zero is the singleton of the zero vector i.e. the zero subspace. (Contributed by NM, 9-Mar-2014)

Ref Expression
Hypotheses dih0.z 0 ˙ = 0. K
dih0.h H = LHyp K
dih0.i I = DIsoH K W
dih0.u U = DVecH K W
dih0.o O = 0 U
Assertion dih0 K HL W H I 0 ˙ = O

Proof

Step Hyp Ref Expression
1 dih0.z 0 ˙ = 0. K
2 dih0.h H = LHyp K
3 dih0.i I = DIsoH K W
4 dih0.u U = DVecH K W
5 dih0.o O = 0 U
6 id K HL W H K HL W H
7 hlop K HL K OP
8 7 adantr K HL W H K OP
9 eqid Base K = Base K
10 9 1 op0cl K OP 0 ˙ Base K
11 8 10 syl K HL W H 0 ˙ Base K
12 9 2 lhpbase W H W Base K
13 eqid K = K
14 9 13 1 op0le K OP W Base K 0 ˙ K W
15 7 12 14 syl2an K HL W H 0 ˙ K W
16 eqid DIsoB K W = DIsoB K W
17 9 13 2 3 16 dihvalb K HL W H 0 ˙ Base K 0 ˙ K W I 0 ˙ = DIsoB K W 0 ˙
18 6 11 15 17 syl12anc K HL W H I 0 ˙ = DIsoB K W 0 ˙
19 1 2 16 4 5 dib0 K HL W H DIsoB K W 0 ˙ = O
20 18 19 eqtrd K HL W H I 0 ˙ = O