Description: A lattice element is zero iff its isomorphism is the zero subspace. (Contributed by NM, 16-Aug-2014) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dih0b.b | |
|
dih0b.h | |
||
dih0b.o | |
||
dih0b.i | |
||
dih0b.u | |
||
dih0b.z | |
||
dih0b.k | |
||
dih0b.x | |
||
Assertion | dih0bN | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dih0b.b | |
|
2 | dih0b.h | |
|
3 | dih0b.o | |
|
4 | dih0b.i | |
|
5 | dih0b.u | |
|
6 | dih0b.z | |
|
7 | dih0b.k | |
|
8 | dih0b.x | |
|
9 | 7 | simpld | |
10 | hlop | |
|
11 | 1 3 | op0cl | |
12 | 9 10 11 | 3syl | |
13 | 1 2 4 | dih11 | |
14 | 7 8 12 13 | syl3anc | |
15 | 3 2 4 5 6 | dih0 | |
16 | 7 15 | syl | |
17 | 16 | eqeq2d | |
18 | 14 17 | bitr3d | |