Metamath Proof Explorer


Theorem dih0bN

Description: A lattice element is zero iff its isomorphism is the zero subspace. (Contributed by NM, 16-Aug-2014) (New usage is discouraged.)

Ref Expression
Hypotheses dih0b.b B=BaseK
dih0b.h H=LHypK
dih0b.o 0˙=0.K
dih0b.i I=DIsoHKW
dih0b.u U=DVecHKW
dih0b.z Z=0U
dih0b.k φKHLWH
dih0b.x φXB
Assertion dih0bN φX=0˙IX=Z

Proof

Step Hyp Ref Expression
1 dih0b.b B=BaseK
2 dih0b.h H=LHypK
3 dih0b.o 0˙=0.K
4 dih0b.i I=DIsoHKW
5 dih0b.u U=DVecHKW
6 dih0b.z Z=0U
7 dih0b.k φKHLWH
8 dih0b.x φXB
9 7 simpld φKHL
10 hlop KHLKOP
11 1 3 op0cl KOP0˙B
12 9 10 11 3syl φ0˙B
13 1 2 4 dih11 KHLWHXB0˙BIX=I0˙X=0˙
14 7 8 12 13 syl3anc φIX=I0˙X=0˙
15 3 2 4 5 6 dih0 KHLWHI0˙=Z
16 7 15 syl φI0˙=Z
17 16 eqeq2d φIX=I0˙IX=Z
18 14 17 bitr3d φX=0˙IX=Z