Metamath Proof Explorer


Theorem dih0bN

Description: A lattice element is zero iff its isomorphism is the zero subspace. (Contributed by NM, 16-Aug-2014) (New usage is discouraged.)

Ref Expression
Hypotheses dih0b.b B = Base K
dih0b.h H = LHyp K
dih0b.o 0 ˙ = 0. K
dih0b.i I = DIsoH K W
dih0b.u U = DVecH K W
dih0b.z Z = 0 U
dih0b.k φ K HL W H
dih0b.x φ X B
Assertion dih0bN φ X = 0 ˙ I X = Z

Proof

Step Hyp Ref Expression
1 dih0b.b B = Base K
2 dih0b.h H = LHyp K
3 dih0b.o 0 ˙ = 0. K
4 dih0b.i I = DIsoH K W
5 dih0b.u U = DVecH K W
6 dih0b.z Z = 0 U
7 dih0b.k φ K HL W H
8 dih0b.x φ X B
9 7 simpld φ K HL
10 hlop K HL K OP
11 1 3 op0cl K OP 0 ˙ B
12 9 10 11 3syl φ 0 ˙ B
13 1 2 4 dih11 K HL W H X B 0 ˙ B I X = I 0 ˙ X = 0 ˙
14 7 8 12 13 syl3anc φ I X = I 0 ˙ X = 0 ˙
15 3 2 4 5 6 dih0 K HL W H I 0 ˙ = Z
16 7 15 syl φ I 0 ˙ = Z
17 16 eqeq2d φ I X = I 0 ˙ I X = Z
18 14 17 bitr3d φ X = 0 ˙ I X = Z