| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dih0b.b |
|- B = ( Base ` K ) |
| 2 |
|
dih0b.h |
|- H = ( LHyp ` K ) |
| 3 |
|
dih0b.o |
|- .0. = ( 0. ` K ) |
| 4 |
|
dih0b.i |
|- I = ( ( DIsoH ` K ) ` W ) |
| 5 |
|
dih0b.u |
|- U = ( ( DVecH ` K ) ` W ) |
| 6 |
|
dih0b.z |
|- Z = ( 0g ` U ) |
| 7 |
|
dih0b.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
| 8 |
|
dih0b.x |
|- ( ph -> X e. B ) |
| 9 |
7
|
simpld |
|- ( ph -> K e. HL ) |
| 10 |
|
hlop |
|- ( K e. HL -> K e. OP ) |
| 11 |
1 3
|
op0cl |
|- ( K e. OP -> .0. e. B ) |
| 12 |
9 10 11
|
3syl |
|- ( ph -> .0. e. B ) |
| 13 |
1 2 4
|
dih11 |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. B /\ .0. e. B ) -> ( ( I ` X ) = ( I ` .0. ) <-> X = .0. ) ) |
| 14 |
7 8 12 13
|
syl3anc |
|- ( ph -> ( ( I ` X ) = ( I ` .0. ) <-> X = .0. ) ) |
| 15 |
3 2 4 5 6
|
dih0 |
|- ( ( K e. HL /\ W e. H ) -> ( I ` .0. ) = { Z } ) |
| 16 |
7 15
|
syl |
|- ( ph -> ( I ` .0. ) = { Z } ) |
| 17 |
16
|
eqeq2d |
|- ( ph -> ( ( I ` X ) = ( I ` .0. ) <-> ( I ` X ) = { Z } ) ) |
| 18 |
14 17
|
bitr3d |
|- ( ph -> ( X = .0. <-> ( I ` X ) = { Z } ) ) |