| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dih0b.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
| 2 |
|
dih0b.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 3 |
|
dih0b.o |
⊢ 0 = ( 0. ‘ 𝐾 ) |
| 4 |
|
dih0b.i |
⊢ 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) |
| 5 |
|
dih0b.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
| 6 |
|
dih0b.z |
⊢ 𝑍 = ( 0g ‘ 𝑈 ) |
| 7 |
|
dih0b.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 8 |
|
dih0b.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 9 |
7
|
simpld |
⊢ ( 𝜑 → 𝐾 ∈ HL ) |
| 10 |
|
hlop |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ OP ) |
| 11 |
1 3
|
op0cl |
⊢ ( 𝐾 ∈ OP → 0 ∈ 𝐵 ) |
| 12 |
9 10 11
|
3syl |
⊢ ( 𝜑 → 0 ∈ 𝐵 ) |
| 13 |
1 2 4
|
dih11 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝐵 ∧ 0 ∈ 𝐵 ) → ( ( 𝐼 ‘ 𝑋 ) = ( 𝐼 ‘ 0 ) ↔ 𝑋 = 0 ) ) |
| 14 |
7 8 12 13
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐼 ‘ 𝑋 ) = ( 𝐼 ‘ 0 ) ↔ 𝑋 = 0 ) ) |
| 15 |
3 2 4 5 6
|
dih0 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( 𝐼 ‘ 0 ) = { 𝑍 } ) |
| 16 |
7 15
|
syl |
⊢ ( 𝜑 → ( 𝐼 ‘ 0 ) = { 𝑍 } ) |
| 17 |
16
|
eqeq2d |
⊢ ( 𝜑 → ( ( 𝐼 ‘ 𝑋 ) = ( 𝐼 ‘ 0 ) ↔ ( 𝐼 ‘ 𝑋 ) = { 𝑍 } ) ) |
| 18 |
14 17
|
bitr3d |
⊢ ( 𝜑 → ( 𝑋 = 0 ↔ ( 𝐼 ‘ 𝑋 ) = { 𝑍 } ) ) |