| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dih0.z |
|- .0. = ( 0. ` K ) |
| 2 |
|
dih0.h |
|- H = ( LHyp ` K ) |
| 3 |
|
dih0.i |
|- I = ( ( DIsoH ` K ) ` W ) |
| 4 |
|
dih0.u |
|- U = ( ( DVecH ` K ) ` W ) |
| 5 |
|
dih0.o |
|- O = ( 0g ` U ) |
| 6 |
|
id |
|- ( ( K e. HL /\ W e. H ) -> ( K e. HL /\ W e. H ) ) |
| 7 |
|
hlop |
|- ( K e. HL -> K e. OP ) |
| 8 |
7
|
adantr |
|- ( ( K e. HL /\ W e. H ) -> K e. OP ) |
| 9 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
| 10 |
9 1
|
op0cl |
|- ( K e. OP -> .0. e. ( Base ` K ) ) |
| 11 |
8 10
|
syl |
|- ( ( K e. HL /\ W e. H ) -> .0. e. ( Base ` K ) ) |
| 12 |
9 2
|
lhpbase |
|- ( W e. H -> W e. ( Base ` K ) ) |
| 13 |
|
eqid |
|- ( le ` K ) = ( le ` K ) |
| 14 |
9 13 1
|
op0le |
|- ( ( K e. OP /\ W e. ( Base ` K ) ) -> .0. ( le ` K ) W ) |
| 15 |
7 12 14
|
syl2an |
|- ( ( K e. HL /\ W e. H ) -> .0. ( le ` K ) W ) |
| 16 |
|
eqid |
|- ( ( DIsoB ` K ) ` W ) = ( ( DIsoB ` K ) ` W ) |
| 17 |
9 13 2 3 16
|
dihvalb |
|- ( ( ( K e. HL /\ W e. H ) /\ ( .0. e. ( Base ` K ) /\ .0. ( le ` K ) W ) ) -> ( I ` .0. ) = ( ( ( DIsoB ` K ) ` W ) ` .0. ) ) |
| 18 |
6 11 15 17
|
syl12anc |
|- ( ( K e. HL /\ W e. H ) -> ( I ` .0. ) = ( ( ( DIsoB ` K ) ` W ) ` .0. ) ) |
| 19 |
1 2 16 4 5
|
dib0 |
|- ( ( K e. HL /\ W e. H ) -> ( ( ( DIsoB ` K ) ` W ) ` .0. ) = { O } ) |
| 20 |
18 19
|
eqtrd |
|- ( ( K e. HL /\ W e. H ) -> ( I ` .0. ) = { O } ) |