Description: Restricted existential quantification over a set with an element removed. (Contributed by NM, 4-Feb-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | rexdifsn | ⊢ ( ∃ 𝑥 ∈ ( 𝐴 ∖ { 𝐵 } ) 𝜑 ↔ ∃ 𝑥 ∈ 𝐴 ( 𝑥 ≠ 𝐵 ∧ 𝜑 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifsn | ⊢ ( 𝑥 ∈ ( 𝐴 ∖ { 𝐵 } ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑥 ≠ 𝐵 ) ) | |
2 | 1 | anbi1i | ⊢ ( ( 𝑥 ∈ ( 𝐴 ∖ { 𝐵 } ) ∧ 𝜑 ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ≠ 𝐵 ) ∧ 𝜑 ) ) |
3 | anass | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ≠ 𝐵 ) ∧ 𝜑 ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( 𝑥 ≠ 𝐵 ∧ 𝜑 ) ) ) | |
4 | 2 3 | bitri | ⊢ ( ( 𝑥 ∈ ( 𝐴 ∖ { 𝐵 } ) ∧ 𝜑 ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( 𝑥 ≠ 𝐵 ∧ 𝜑 ) ) ) |
5 | 4 | rexbii2 | ⊢ ( ∃ 𝑥 ∈ ( 𝐴 ∖ { 𝐵 } ) 𝜑 ↔ ∃ 𝑥 ∈ 𝐴 ( 𝑥 ≠ 𝐵 ∧ 𝜑 ) ) |