Metamath Proof Explorer


Theorem rexdifsn

Description: Restricted existential quantification over a set with an element removed. (Contributed by NM, 4-Feb-2015)

Ref Expression
Assertion rexdifsn
|- ( E. x e. ( A \ { B } ) ph <-> E. x e. A ( x =/= B /\ ph ) )

Proof

Step Hyp Ref Expression
1 eldifsn
 |-  ( x e. ( A \ { B } ) <-> ( x e. A /\ x =/= B ) )
2 1 anbi1i
 |-  ( ( x e. ( A \ { B } ) /\ ph ) <-> ( ( x e. A /\ x =/= B ) /\ ph ) )
3 anass
 |-  ( ( ( x e. A /\ x =/= B ) /\ ph ) <-> ( x e. A /\ ( x =/= B /\ ph ) ) )
4 2 3 bitri
 |-  ( ( x e. ( A \ { B } ) /\ ph ) <-> ( x e. A /\ ( x =/= B /\ ph ) ) )
5 4 rexbii2
 |-  ( E. x e. ( A \ { B } ) ph <-> E. x e. A ( x =/= B /\ ph ) )