Description: Restricted existential quantification over a set with an element removed. (Contributed by NM, 4-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rexdifsn | |- ( E. x e. ( A \ { B } ) ph <-> E. x e. A ( x =/= B /\ ph ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldifsn | |- ( x e. ( A \ { B } ) <-> ( x e. A /\ x =/= B ) ) |
|
| 2 | 1 | anbi1i | |- ( ( x e. ( A \ { B } ) /\ ph ) <-> ( ( x e. A /\ x =/= B ) /\ ph ) ) |
| 3 | anass | |- ( ( ( x e. A /\ x =/= B ) /\ ph ) <-> ( x e. A /\ ( x =/= B /\ ph ) ) ) |
|
| 4 | 2 3 | bitri | |- ( ( x e. ( A \ { B } ) /\ ph ) <-> ( x e. A /\ ( x =/= B /\ ph ) ) ) |
| 5 | 4 | rexbii2 | |- ( E. x e. ( A \ { B } ) ph <-> E. x e. A ( x =/= B /\ ph ) ) |