Metamath Proof Explorer


Theorem rexdifsn

Description: Restricted existential quantification over a set with an element removed. (Contributed by NM, 4-Feb-2015)

Ref Expression
Assertion rexdifsn xABφxAxBφ

Proof

Step Hyp Ref Expression
1 eldifsn xABxAxB
2 1 anbi1i xABφxAxBφ
3 anass xAxBφxAxBφ
4 2 3 bitri xABφxAxBφ
5 4 rexbii2 xABφxAxBφ