Metamath Proof Explorer


Theorem dihatexv2

Description: There is a nonzero vector that maps to every lattice atom. (Contributed by NM, 17-Aug-2014)

Ref Expression
Hypotheses dihatexv2.a 𝐴 = ( Atoms ‘ 𝐾 )
dihatexv2.h 𝐻 = ( LHyp ‘ 𝐾 )
dihatexv2.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
dihatexv2.v 𝑉 = ( Base ‘ 𝑈 )
dihatexv2.o 0 = ( 0g𝑈 )
dihatexv2.n 𝑁 = ( LSpan ‘ 𝑈 )
dihatexv2.i 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )
dihatexv2.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
Assertion dihatexv2 ( 𝜑 → ( 𝑄𝐴 ↔ ∃ 𝑥 ∈ ( 𝑉 ∖ { 0 } ) 𝑄 = ( 𝐼 ‘ ( 𝑁 ‘ { 𝑥 } ) ) ) )

Proof

Step Hyp Ref Expression
1 dihatexv2.a 𝐴 = ( Atoms ‘ 𝐾 )
2 dihatexv2.h 𝐻 = ( LHyp ‘ 𝐾 )
3 dihatexv2.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
4 dihatexv2.v 𝑉 = ( Base ‘ 𝑈 )
5 dihatexv2.o 0 = ( 0g𝑈 )
6 dihatexv2.n 𝑁 = ( LSpan ‘ 𝑈 )
7 dihatexv2.i 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )
8 dihatexv2.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
9 eqid ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 )
10 9 1 atbase ( 𝑄𝐴𝑄 ∈ ( Base ‘ 𝐾 ) )
11 10 anim2i ( ( 𝜑𝑄𝐴 ) → ( 𝜑𝑄 ∈ ( Base ‘ 𝐾 ) ) )
12 8 adantr ( ( 𝜑𝑥 ∈ ( 𝑉 ∖ { 0 } ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
13 eldifi ( 𝑥 ∈ ( 𝑉 ∖ { 0 } ) → 𝑥𝑉 )
14 2 3 4 6 7 dihlsprn ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑥𝑉 ) → ( 𝑁 ‘ { 𝑥 } ) ∈ ran 𝐼 )
15 8 13 14 syl2an ( ( 𝜑𝑥 ∈ ( 𝑉 ∖ { 0 } ) ) → ( 𝑁 ‘ { 𝑥 } ) ∈ ran 𝐼 )
16 9 2 7 dihcnvcl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑁 ‘ { 𝑥 } ) ∈ ran 𝐼 ) → ( 𝐼 ‘ ( 𝑁 ‘ { 𝑥 } ) ) ∈ ( Base ‘ 𝐾 ) )
17 12 15 16 syl2anc ( ( 𝜑𝑥 ∈ ( 𝑉 ∖ { 0 } ) ) → ( 𝐼 ‘ ( 𝑁 ‘ { 𝑥 } ) ) ∈ ( Base ‘ 𝐾 ) )
18 eleq1a ( ( 𝐼 ‘ ( 𝑁 ‘ { 𝑥 } ) ) ∈ ( Base ‘ 𝐾 ) → ( 𝑄 = ( 𝐼 ‘ ( 𝑁 ‘ { 𝑥 } ) ) → 𝑄 ∈ ( Base ‘ 𝐾 ) ) )
19 17 18 syl ( ( 𝜑𝑥 ∈ ( 𝑉 ∖ { 0 } ) ) → ( 𝑄 = ( 𝐼 ‘ ( 𝑁 ‘ { 𝑥 } ) ) → 𝑄 ∈ ( Base ‘ 𝐾 ) ) )
20 19 rexlimdva ( 𝜑 → ( ∃ 𝑥 ∈ ( 𝑉 ∖ { 0 } ) 𝑄 = ( 𝐼 ‘ ( 𝑁 ‘ { 𝑥 } ) ) → 𝑄 ∈ ( Base ‘ 𝐾 ) ) )
21 20 imdistani ( ( 𝜑 ∧ ∃ 𝑥 ∈ ( 𝑉 ∖ { 0 } ) 𝑄 = ( 𝐼 ‘ ( 𝑁 ‘ { 𝑥 } ) ) ) → ( 𝜑𝑄 ∈ ( Base ‘ 𝐾 ) ) )
22 8 adantr ( ( 𝜑𝑄 ∈ ( Base ‘ 𝐾 ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
23 simpr ( ( 𝜑𝑄 ∈ ( Base ‘ 𝐾 ) ) → 𝑄 ∈ ( Base ‘ 𝐾 ) )
24 9 1 2 3 4 5 6 7 22 23 dihatexv ( ( 𝜑𝑄 ∈ ( Base ‘ 𝐾 ) ) → ( 𝑄𝐴 ↔ ∃ 𝑥 ∈ ( 𝑉 ∖ { 0 } ) ( 𝐼𝑄 ) = ( 𝑁 ‘ { 𝑥 } ) ) )
25 22 adantr ( ( ( 𝜑𝑄 ∈ ( Base ‘ 𝐾 ) ) ∧ 𝑥 ∈ ( 𝑉 ∖ { 0 } ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
26 22 13 14 syl2an ( ( ( 𝜑𝑄 ∈ ( Base ‘ 𝐾 ) ) ∧ 𝑥 ∈ ( 𝑉 ∖ { 0 } ) ) → ( 𝑁 ‘ { 𝑥 } ) ∈ ran 𝐼 )
27 2 7 dihcnvid2 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑁 ‘ { 𝑥 } ) ∈ ran 𝐼 ) → ( 𝐼 ‘ ( 𝐼 ‘ ( 𝑁 ‘ { 𝑥 } ) ) ) = ( 𝑁 ‘ { 𝑥 } ) )
28 25 26 27 syl2anc ( ( ( 𝜑𝑄 ∈ ( Base ‘ 𝐾 ) ) ∧ 𝑥 ∈ ( 𝑉 ∖ { 0 } ) ) → ( 𝐼 ‘ ( 𝐼 ‘ ( 𝑁 ‘ { 𝑥 } ) ) ) = ( 𝑁 ‘ { 𝑥 } ) )
29 28 eqeq2d ( ( ( 𝜑𝑄 ∈ ( Base ‘ 𝐾 ) ) ∧ 𝑥 ∈ ( 𝑉 ∖ { 0 } ) ) → ( ( 𝐼𝑄 ) = ( 𝐼 ‘ ( 𝐼 ‘ ( 𝑁 ‘ { 𝑥 } ) ) ) ↔ ( 𝐼𝑄 ) = ( 𝑁 ‘ { 𝑥 } ) ) )
30 simplr ( ( ( 𝜑𝑄 ∈ ( Base ‘ 𝐾 ) ) ∧ 𝑥 ∈ ( 𝑉 ∖ { 0 } ) ) → 𝑄 ∈ ( Base ‘ 𝐾 ) )
31 25 26 16 syl2anc ( ( ( 𝜑𝑄 ∈ ( Base ‘ 𝐾 ) ) ∧ 𝑥 ∈ ( 𝑉 ∖ { 0 } ) ) → ( 𝐼 ‘ ( 𝑁 ‘ { 𝑥 } ) ) ∈ ( Base ‘ 𝐾 ) )
32 9 2 7 dih11 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑄 ∈ ( Base ‘ 𝐾 ) ∧ ( 𝐼 ‘ ( 𝑁 ‘ { 𝑥 } ) ) ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝐼𝑄 ) = ( 𝐼 ‘ ( 𝐼 ‘ ( 𝑁 ‘ { 𝑥 } ) ) ) ↔ 𝑄 = ( 𝐼 ‘ ( 𝑁 ‘ { 𝑥 } ) ) ) )
33 25 30 31 32 syl3anc ( ( ( 𝜑𝑄 ∈ ( Base ‘ 𝐾 ) ) ∧ 𝑥 ∈ ( 𝑉 ∖ { 0 } ) ) → ( ( 𝐼𝑄 ) = ( 𝐼 ‘ ( 𝐼 ‘ ( 𝑁 ‘ { 𝑥 } ) ) ) ↔ 𝑄 = ( 𝐼 ‘ ( 𝑁 ‘ { 𝑥 } ) ) ) )
34 29 33 bitr3d ( ( ( 𝜑𝑄 ∈ ( Base ‘ 𝐾 ) ) ∧ 𝑥 ∈ ( 𝑉 ∖ { 0 } ) ) → ( ( 𝐼𝑄 ) = ( 𝑁 ‘ { 𝑥 } ) ↔ 𝑄 = ( 𝐼 ‘ ( 𝑁 ‘ { 𝑥 } ) ) ) )
35 34 rexbidva ( ( 𝜑𝑄 ∈ ( Base ‘ 𝐾 ) ) → ( ∃ 𝑥 ∈ ( 𝑉 ∖ { 0 } ) ( 𝐼𝑄 ) = ( 𝑁 ‘ { 𝑥 } ) ↔ ∃ 𝑥 ∈ ( 𝑉 ∖ { 0 } ) 𝑄 = ( 𝐼 ‘ ( 𝑁 ‘ { 𝑥 } ) ) ) )
36 24 35 bitrd ( ( 𝜑𝑄 ∈ ( Base ‘ 𝐾 ) ) → ( 𝑄𝐴 ↔ ∃ 𝑥 ∈ ( 𝑉 ∖ { 0 } ) 𝑄 = ( 𝐼 ‘ ( 𝑁 ‘ { 𝑥 } ) ) ) )
37 11 21 36 pm5.21nd ( 𝜑 → ( 𝑄𝐴 ↔ ∃ 𝑥 ∈ ( 𝑉 ∖ { 0 } ) 𝑄 = ( 𝐼 ‘ ( 𝑁 ‘ { 𝑥 } ) ) ) )