Step |
Hyp |
Ref |
Expression |
1 |
|
dihatexv2.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
2 |
|
dihatexv2.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
3 |
|
dihatexv2.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
dihatexv2.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
5 |
|
dihatexv2.o |
⊢ 0 = ( 0g ‘ 𝑈 ) |
6 |
|
dihatexv2.n |
⊢ 𝑁 = ( LSpan ‘ 𝑈 ) |
7 |
|
dihatexv2.i |
⊢ 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) |
8 |
|
dihatexv2.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
9 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
10 |
9 1
|
atbase |
⊢ ( 𝑄 ∈ 𝐴 → 𝑄 ∈ ( Base ‘ 𝐾 ) ) |
11 |
10
|
anim2i |
⊢ ( ( 𝜑 ∧ 𝑄 ∈ 𝐴 ) → ( 𝜑 ∧ 𝑄 ∈ ( Base ‘ 𝐾 ) ) ) |
12 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑉 ∖ { 0 } ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
13 |
|
eldifi |
⊢ ( 𝑥 ∈ ( 𝑉 ∖ { 0 } ) → 𝑥 ∈ 𝑉 ) |
14 |
2 3 4 6 7
|
dihlsprn |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑥 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑥 } ) ∈ ran 𝐼 ) |
15 |
8 13 14
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑉 ∖ { 0 } ) ) → ( 𝑁 ‘ { 𝑥 } ) ∈ ran 𝐼 ) |
16 |
9 2 7
|
dihcnvcl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑁 ‘ { 𝑥 } ) ∈ ran 𝐼 ) → ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑥 } ) ) ∈ ( Base ‘ 𝐾 ) ) |
17 |
12 15 16
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑉 ∖ { 0 } ) ) → ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑥 } ) ) ∈ ( Base ‘ 𝐾 ) ) |
18 |
|
eleq1a |
⊢ ( ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑥 } ) ) ∈ ( Base ‘ 𝐾 ) → ( 𝑄 = ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑥 } ) ) → 𝑄 ∈ ( Base ‘ 𝐾 ) ) ) |
19 |
17 18
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑉 ∖ { 0 } ) ) → ( 𝑄 = ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑥 } ) ) → 𝑄 ∈ ( Base ‘ 𝐾 ) ) ) |
20 |
19
|
rexlimdva |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ ( 𝑉 ∖ { 0 } ) 𝑄 = ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑥 } ) ) → 𝑄 ∈ ( Base ‘ 𝐾 ) ) ) |
21 |
20
|
imdistani |
⊢ ( ( 𝜑 ∧ ∃ 𝑥 ∈ ( 𝑉 ∖ { 0 } ) 𝑄 = ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑥 } ) ) ) → ( 𝜑 ∧ 𝑄 ∈ ( Base ‘ 𝐾 ) ) ) |
22 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑄 ∈ ( Base ‘ 𝐾 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
23 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑄 ∈ ( Base ‘ 𝐾 ) ) → 𝑄 ∈ ( Base ‘ 𝐾 ) ) |
24 |
9 1 2 3 4 5 6 7 22 23
|
dihatexv |
⊢ ( ( 𝜑 ∧ 𝑄 ∈ ( Base ‘ 𝐾 ) ) → ( 𝑄 ∈ 𝐴 ↔ ∃ 𝑥 ∈ ( 𝑉 ∖ { 0 } ) ( 𝐼 ‘ 𝑄 ) = ( 𝑁 ‘ { 𝑥 } ) ) ) |
25 |
22
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑄 ∈ ( Base ‘ 𝐾 ) ) ∧ 𝑥 ∈ ( 𝑉 ∖ { 0 } ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
26 |
22 13 14
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝑄 ∈ ( Base ‘ 𝐾 ) ) ∧ 𝑥 ∈ ( 𝑉 ∖ { 0 } ) ) → ( 𝑁 ‘ { 𝑥 } ) ∈ ran 𝐼 ) |
27 |
2 7
|
dihcnvid2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑁 ‘ { 𝑥 } ) ∈ ran 𝐼 ) → ( 𝐼 ‘ ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑥 } ) ) ) = ( 𝑁 ‘ { 𝑥 } ) ) |
28 |
25 26 27
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑄 ∈ ( Base ‘ 𝐾 ) ) ∧ 𝑥 ∈ ( 𝑉 ∖ { 0 } ) ) → ( 𝐼 ‘ ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑥 } ) ) ) = ( 𝑁 ‘ { 𝑥 } ) ) |
29 |
28
|
eqeq2d |
⊢ ( ( ( 𝜑 ∧ 𝑄 ∈ ( Base ‘ 𝐾 ) ) ∧ 𝑥 ∈ ( 𝑉 ∖ { 0 } ) ) → ( ( 𝐼 ‘ 𝑄 ) = ( 𝐼 ‘ ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑥 } ) ) ) ↔ ( 𝐼 ‘ 𝑄 ) = ( 𝑁 ‘ { 𝑥 } ) ) ) |
30 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑄 ∈ ( Base ‘ 𝐾 ) ) ∧ 𝑥 ∈ ( 𝑉 ∖ { 0 } ) ) → 𝑄 ∈ ( Base ‘ 𝐾 ) ) |
31 |
25 26 16
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑄 ∈ ( Base ‘ 𝐾 ) ) ∧ 𝑥 ∈ ( 𝑉 ∖ { 0 } ) ) → ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑥 } ) ) ∈ ( Base ‘ 𝐾 ) ) |
32 |
9 2 7
|
dih11 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑄 ∈ ( Base ‘ 𝐾 ) ∧ ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑥 } ) ) ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝐼 ‘ 𝑄 ) = ( 𝐼 ‘ ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑥 } ) ) ) ↔ 𝑄 = ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑥 } ) ) ) ) |
33 |
25 30 31 32
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑄 ∈ ( Base ‘ 𝐾 ) ) ∧ 𝑥 ∈ ( 𝑉 ∖ { 0 } ) ) → ( ( 𝐼 ‘ 𝑄 ) = ( 𝐼 ‘ ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑥 } ) ) ) ↔ 𝑄 = ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑥 } ) ) ) ) |
34 |
29 33
|
bitr3d |
⊢ ( ( ( 𝜑 ∧ 𝑄 ∈ ( Base ‘ 𝐾 ) ) ∧ 𝑥 ∈ ( 𝑉 ∖ { 0 } ) ) → ( ( 𝐼 ‘ 𝑄 ) = ( 𝑁 ‘ { 𝑥 } ) ↔ 𝑄 = ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑥 } ) ) ) ) |
35 |
34
|
rexbidva |
⊢ ( ( 𝜑 ∧ 𝑄 ∈ ( Base ‘ 𝐾 ) ) → ( ∃ 𝑥 ∈ ( 𝑉 ∖ { 0 } ) ( 𝐼 ‘ 𝑄 ) = ( 𝑁 ‘ { 𝑥 } ) ↔ ∃ 𝑥 ∈ ( 𝑉 ∖ { 0 } ) 𝑄 = ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑥 } ) ) ) ) |
36 |
24 35
|
bitrd |
⊢ ( ( 𝜑 ∧ 𝑄 ∈ ( Base ‘ 𝐾 ) ) → ( 𝑄 ∈ 𝐴 ↔ ∃ 𝑥 ∈ ( 𝑉 ∖ { 0 } ) 𝑄 = ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑥 } ) ) ) ) |
37 |
11 21 36
|
pm5.21nd |
⊢ ( 𝜑 → ( 𝑄 ∈ 𝐴 ↔ ∃ 𝑥 ∈ ( 𝑉 ∖ { 0 } ) 𝑄 = ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑥 } ) ) ) ) |