Metamath Proof Explorer


Theorem dihatexv2

Description: There is a nonzero vector that maps to every lattice atom. (Contributed by NM, 17-Aug-2014)

Ref Expression
Hypotheses dihatexv2.a A = Atoms K
dihatexv2.h H = LHyp K
dihatexv2.u U = DVecH K W
dihatexv2.v V = Base U
dihatexv2.o 0 ˙ = 0 U
dihatexv2.n N = LSpan U
dihatexv2.i I = DIsoH K W
dihatexv2.k φ K HL W H
Assertion dihatexv2 φ Q A x V 0 ˙ Q = I -1 N x

Proof

Step Hyp Ref Expression
1 dihatexv2.a A = Atoms K
2 dihatexv2.h H = LHyp K
3 dihatexv2.u U = DVecH K W
4 dihatexv2.v V = Base U
5 dihatexv2.o 0 ˙ = 0 U
6 dihatexv2.n N = LSpan U
7 dihatexv2.i I = DIsoH K W
8 dihatexv2.k φ K HL W H
9 eqid Base K = Base K
10 9 1 atbase Q A Q Base K
11 10 anim2i φ Q A φ Q Base K
12 8 adantr φ x V 0 ˙ K HL W H
13 eldifi x V 0 ˙ x V
14 2 3 4 6 7 dihlsprn K HL W H x V N x ran I
15 8 13 14 syl2an φ x V 0 ˙ N x ran I
16 9 2 7 dihcnvcl K HL W H N x ran I I -1 N x Base K
17 12 15 16 syl2anc φ x V 0 ˙ I -1 N x Base K
18 eleq1a I -1 N x Base K Q = I -1 N x Q Base K
19 17 18 syl φ x V 0 ˙ Q = I -1 N x Q Base K
20 19 rexlimdva φ x V 0 ˙ Q = I -1 N x Q Base K
21 20 imdistani φ x V 0 ˙ Q = I -1 N x φ Q Base K
22 8 adantr φ Q Base K K HL W H
23 simpr φ Q Base K Q Base K
24 9 1 2 3 4 5 6 7 22 23 dihatexv φ Q Base K Q A x V 0 ˙ I Q = N x
25 22 adantr φ Q Base K x V 0 ˙ K HL W H
26 22 13 14 syl2an φ Q Base K x V 0 ˙ N x ran I
27 2 7 dihcnvid2 K HL W H N x ran I I I -1 N x = N x
28 25 26 27 syl2anc φ Q Base K x V 0 ˙ I I -1 N x = N x
29 28 eqeq2d φ Q Base K x V 0 ˙ I Q = I I -1 N x I Q = N x
30 simplr φ Q Base K x V 0 ˙ Q Base K
31 25 26 16 syl2anc φ Q Base K x V 0 ˙ I -1 N x Base K
32 9 2 7 dih11 K HL W H Q Base K I -1 N x Base K I Q = I I -1 N x Q = I -1 N x
33 25 30 31 32 syl3anc φ Q Base K x V 0 ˙ I Q = I I -1 N x Q = I -1 N x
34 29 33 bitr3d φ Q Base K x V 0 ˙ I Q = N x Q = I -1 N x
35 34 rexbidva φ Q Base K x V 0 ˙ I Q = N x x V 0 ˙ Q = I -1 N x
36 24 35 bitrd φ Q Base K Q A x V 0 ˙ Q = I -1 N x
37 11 21 36 pm5.21nd φ Q A x V 0 ˙ Q = I -1 N x