Metamath Proof Explorer


Theorem dihcnvid2

Description: The isomorphism of a converse isomorphism. (Contributed by NM, 5-Aug-2014)

Ref Expression
Hypotheses dihcnvid2.h H = LHyp K
dihcnvid2.i I = DIsoH K W
Assertion dihcnvid2 K HL W H X ran I I I -1 X = X

Proof

Step Hyp Ref Expression
1 dihcnvid2.h H = LHyp K
2 dihcnvid2.i I = DIsoH K W
3 eqid Base K = Base K
4 eqid DVecH K W = DVecH K W
5 eqid LSubSp DVecH K W = LSubSp DVecH K W
6 3 1 2 4 5 dihf11 K HL W H I : Base K 1-1 LSubSp DVecH K W
7 f1f1orn I : Base K 1-1 LSubSp DVecH K W I : Base K 1-1 onto ran I
8 6 7 syl K HL W H I : Base K 1-1 onto ran I
9 f1ocnvfv2 I : Base K 1-1 onto ran I X ran I I I -1 X = X
10 8 9 sylan K HL W H X ran I I I -1 X = X