Metamath Proof Explorer


Theorem dihcnvord

Description: Ordering property for converse of isomorphism H. (Contributed by NM, 17-Aug-2014)

Ref Expression
Hypotheses dihcnvord.l ˙ = K
dihcnvord.h H = LHyp K
dihcnvord.i I = DIsoH K W
dihcnvord.k φ K HL W H
dihcnvord.x φ X ran I
dihcnvord.y φ Y ran I
Assertion dihcnvord φ I -1 X ˙ I -1 Y X Y

Proof

Step Hyp Ref Expression
1 dihcnvord.l ˙ = K
2 dihcnvord.h H = LHyp K
3 dihcnvord.i I = DIsoH K W
4 dihcnvord.k φ K HL W H
5 dihcnvord.x φ X ran I
6 dihcnvord.y φ Y ran I
7 eqid Base K = Base K
8 7 2 3 dihcnvcl K HL W H X ran I I -1 X Base K
9 4 5 8 syl2anc φ I -1 X Base K
10 7 2 3 dihcnvcl K HL W H Y ran I I -1 Y Base K
11 4 6 10 syl2anc φ I -1 Y Base K
12 7 1 2 3 dihord K HL W H I -1 X Base K I -1 Y Base K I I -1 X I I -1 Y I -1 X ˙ I -1 Y
13 4 9 11 12 syl3anc φ I I -1 X I I -1 Y I -1 X ˙ I -1 Y
14 2 3 dihcnvid2 K HL W H X ran I I I -1 X = X
15 4 5 14 syl2anc φ I I -1 X = X
16 2 3 dihcnvid2 K HL W H Y ran I I I -1 Y = Y
17 4 6 16 syl2anc φ I I -1 Y = Y
18 15 17 sseq12d φ I I -1 X I I -1 Y X Y
19 13 18 bitr3d φ I -1 X ˙ I -1 Y X Y