Metamath Proof Explorer


Theorem dihcnv11

Description: The converse of isomorphism H is one-to-one. (Contributed by NM, 17-Aug-2014)

Ref Expression
Hypotheses dihcnv11.h H = LHyp K
dihcnv11.i I = DIsoH K W
dihcnv11.k φ K HL W H
dihcnv11.x φ X ran I
dihcnv11.y φ Y ran I
Assertion dihcnv11 φ I -1 X = I -1 Y X = Y

Proof

Step Hyp Ref Expression
1 dihcnv11.h H = LHyp K
2 dihcnv11.i I = DIsoH K W
3 dihcnv11.k φ K HL W H
4 dihcnv11.x φ X ran I
5 dihcnv11.y φ Y ran I
6 eqid Base K = Base K
7 6 1 2 dihcnvcl K HL W H X ran I I -1 X Base K
8 3 4 7 syl2anc φ I -1 X Base K
9 6 1 2 dihcnvcl K HL W H Y ran I I -1 Y Base K
10 3 5 9 syl2anc φ I -1 Y Base K
11 6 1 2 dih11 K HL W H I -1 X Base K I -1 Y Base K I I -1 X = I I -1 Y I -1 X = I -1 Y
12 3 8 10 11 syl3anc φ I I -1 X = I I -1 Y I -1 X = I -1 Y
13 1 2 dihcnvid2 K HL W H X ran I I I -1 X = X
14 3 4 13 syl2anc φ I I -1 X = X
15 1 2 dihcnvid2 K HL W H Y ran I I I -1 Y = Y
16 3 5 15 syl2anc φ I I -1 Y = Y
17 14 16 eqeq12d φ I I -1 X = I I -1 Y X = Y
18 12 17 bitr3d φ I -1 X = I -1 Y X = Y