Metamath Proof Explorer


Theorem dihcnv11

Description: The converse of isomorphism H is one-to-one. (Contributed by NM, 17-Aug-2014)

Ref Expression
Hypotheses dihcnv11.h 𝐻 = ( LHyp ‘ 𝐾 )
dihcnv11.i 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )
dihcnv11.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
dihcnv11.x ( 𝜑𝑋 ∈ ran 𝐼 )
dihcnv11.y ( 𝜑𝑌 ∈ ran 𝐼 )
Assertion dihcnv11 ( 𝜑 → ( ( 𝐼𝑋 ) = ( 𝐼𝑌 ) ↔ 𝑋 = 𝑌 ) )

Proof

Step Hyp Ref Expression
1 dihcnv11.h 𝐻 = ( LHyp ‘ 𝐾 )
2 dihcnv11.i 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )
3 dihcnv11.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
4 dihcnv11.x ( 𝜑𝑋 ∈ ran 𝐼 )
5 dihcnv11.y ( 𝜑𝑌 ∈ ran 𝐼 )
6 eqid ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 )
7 6 1 2 dihcnvcl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) → ( 𝐼𝑋 ) ∈ ( Base ‘ 𝐾 ) )
8 3 4 7 syl2anc ( 𝜑 → ( 𝐼𝑋 ) ∈ ( Base ‘ 𝐾 ) )
9 6 1 2 dihcnvcl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑌 ∈ ran 𝐼 ) → ( 𝐼𝑌 ) ∈ ( Base ‘ 𝐾 ) )
10 3 5 9 syl2anc ( 𝜑 → ( 𝐼𝑌 ) ∈ ( Base ‘ 𝐾 ) )
11 6 1 2 dih11 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐼𝑋 ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝐼𝑌 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝐼 ‘ ( 𝐼𝑋 ) ) = ( 𝐼 ‘ ( 𝐼𝑌 ) ) ↔ ( 𝐼𝑋 ) = ( 𝐼𝑌 ) ) )
12 3 8 10 11 syl3anc ( 𝜑 → ( ( 𝐼 ‘ ( 𝐼𝑋 ) ) = ( 𝐼 ‘ ( 𝐼𝑌 ) ) ↔ ( 𝐼𝑋 ) = ( 𝐼𝑌 ) ) )
13 1 2 dihcnvid2 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) → ( 𝐼 ‘ ( 𝐼𝑋 ) ) = 𝑋 )
14 3 4 13 syl2anc ( 𝜑 → ( 𝐼 ‘ ( 𝐼𝑋 ) ) = 𝑋 )
15 1 2 dihcnvid2 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑌 ∈ ran 𝐼 ) → ( 𝐼 ‘ ( 𝐼𝑌 ) ) = 𝑌 )
16 3 5 15 syl2anc ( 𝜑 → ( 𝐼 ‘ ( 𝐼𝑌 ) ) = 𝑌 )
17 14 16 eqeq12d ( 𝜑 → ( ( 𝐼 ‘ ( 𝐼𝑋 ) ) = ( 𝐼 ‘ ( 𝐼𝑌 ) ) ↔ 𝑋 = 𝑌 ) )
18 12 17 bitr3d ( 𝜑 → ( ( 𝐼𝑋 ) = ( 𝐼𝑌 ) ↔ 𝑋 = 𝑌 ) )