Step |
Hyp |
Ref |
Expression |
1 |
|
dihcnv11.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
dihcnv11.i |
⊢ 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
dihcnv11.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
4 |
|
dihcnv11.x |
⊢ ( 𝜑 → 𝑋 ∈ ran 𝐼 ) |
5 |
|
dihcnv11.y |
⊢ ( 𝜑 → 𝑌 ∈ ran 𝐼 ) |
6 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
7 |
6 1 2
|
dihcnvcl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) → ( ◡ 𝐼 ‘ 𝑋 ) ∈ ( Base ‘ 𝐾 ) ) |
8 |
3 4 7
|
syl2anc |
⊢ ( 𝜑 → ( ◡ 𝐼 ‘ 𝑋 ) ∈ ( Base ‘ 𝐾 ) ) |
9 |
6 1 2
|
dihcnvcl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑌 ∈ ran 𝐼 ) → ( ◡ 𝐼 ‘ 𝑌 ) ∈ ( Base ‘ 𝐾 ) ) |
10 |
3 5 9
|
syl2anc |
⊢ ( 𝜑 → ( ◡ 𝐼 ‘ 𝑌 ) ∈ ( Base ‘ 𝐾 ) ) |
11 |
6 1 2
|
dih11 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ◡ 𝐼 ‘ 𝑋 ) ∈ ( Base ‘ 𝐾 ) ∧ ( ◡ 𝐼 ‘ 𝑌 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝐼 ‘ ( ◡ 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( ◡ 𝐼 ‘ 𝑌 ) ) ↔ ( ◡ 𝐼 ‘ 𝑋 ) = ( ◡ 𝐼 ‘ 𝑌 ) ) ) |
12 |
3 8 10 11
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐼 ‘ ( ◡ 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( ◡ 𝐼 ‘ 𝑌 ) ) ↔ ( ◡ 𝐼 ‘ 𝑋 ) = ( ◡ 𝐼 ‘ 𝑌 ) ) ) |
13 |
1 2
|
dihcnvid2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) → ( 𝐼 ‘ ( ◡ 𝐼 ‘ 𝑋 ) ) = 𝑋 ) |
14 |
3 4 13
|
syl2anc |
⊢ ( 𝜑 → ( 𝐼 ‘ ( ◡ 𝐼 ‘ 𝑋 ) ) = 𝑋 ) |
15 |
1 2
|
dihcnvid2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑌 ∈ ran 𝐼 ) → ( 𝐼 ‘ ( ◡ 𝐼 ‘ 𝑌 ) ) = 𝑌 ) |
16 |
3 5 15
|
syl2anc |
⊢ ( 𝜑 → ( 𝐼 ‘ ( ◡ 𝐼 ‘ 𝑌 ) ) = 𝑌 ) |
17 |
14 16
|
eqeq12d |
⊢ ( 𝜑 → ( ( 𝐼 ‘ ( ◡ 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( ◡ 𝐼 ‘ 𝑌 ) ) ↔ 𝑋 = 𝑌 ) ) |
18 |
12 17
|
bitr3d |
⊢ ( 𝜑 → ( ( ◡ 𝐼 ‘ 𝑋 ) = ( ◡ 𝐼 ‘ 𝑌 ) ↔ 𝑋 = 𝑌 ) ) |