| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dihcnv11.h |
|- H = ( LHyp ` K ) |
| 2 |
|
dihcnv11.i |
|- I = ( ( DIsoH ` K ) ` W ) |
| 3 |
|
dihcnv11.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
| 4 |
|
dihcnv11.x |
|- ( ph -> X e. ran I ) |
| 5 |
|
dihcnv11.y |
|- ( ph -> Y e. ran I ) |
| 6 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
| 7 |
6 1 2
|
dihcnvcl |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. ran I ) -> ( `' I ` X ) e. ( Base ` K ) ) |
| 8 |
3 4 7
|
syl2anc |
|- ( ph -> ( `' I ` X ) e. ( Base ` K ) ) |
| 9 |
6 1 2
|
dihcnvcl |
|- ( ( ( K e. HL /\ W e. H ) /\ Y e. ran I ) -> ( `' I ` Y ) e. ( Base ` K ) ) |
| 10 |
3 5 9
|
syl2anc |
|- ( ph -> ( `' I ` Y ) e. ( Base ` K ) ) |
| 11 |
6 1 2
|
dih11 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( `' I ` X ) e. ( Base ` K ) /\ ( `' I ` Y ) e. ( Base ` K ) ) -> ( ( I ` ( `' I ` X ) ) = ( I ` ( `' I ` Y ) ) <-> ( `' I ` X ) = ( `' I ` Y ) ) ) |
| 12 |
3 8 10 11
|
syl3anc |
|- ( ph -> ( ( I ` ( `' I ` X ) ) = ( I ` ( `' I ` Y ) ) <-> ( `' I ` X ) = ( `' I ` Y ) ) ) |
| 13 |
1 2
|
dihcnvid2 |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. ran I ) -> ( I ` ( `' I ` X ) ) = X ) |
| 14 |
3 4 13
|
syl2anc |
|- ( ph -> ( I ` ( `' I ` X ) ) = X ) |
| 15 |
1 2
|
dihcnvid2 |
|- ( ( ( K e. HL /\ W e. H ) /\ Y e. ran I ) -> ( I ` ( `' I ` Y ) ) = Y ) |
| 16 |
3 5 15
|
syl2anc |
|- ( ph -> ( I ` ( `' I ` Y ) ) = Y ) |
| 17 |
14 16
|
eqeq12d |
|- ( ph -> ( ( I ` ( `' I ` X ) ) = ( I ` ( `' I ` Y ) ) <-> X = Y ) ) |
| 18 |
12 17
|
bitr3d |
|- ( ph -> ( ( `' I ` X ) = ( `' I ` Y ) <-> X = Y ) ) |