Step |
Hyp |
Ref |
Expression |
1 |
|
dihsslss.h |
|- H = ( LHyp ` K ) |
2 |
|
dihsslss.u |
|- U = ( ( DVecH ` K ) ` W ) |
3 |
|
dihsslss.i |
|- I = ( ( DIsoH ` K ) ` W ) |
4 |
|
dihsslss.s |
|- S = ( LSubSp ` U ) |
5 |
1 3
|
dihcnvid2 |
|- ( ( ( K e. HL /\ W e. H ) /\ x e. ran I ) -> ( I ` ( `' I ` x ) ) = x ) |
6 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
7 |
6 1 3
|
dihcnvcl |
|- ( ( ( K e. HL /\ W e. H ) /\ x e. ran I ) -> ( `' I ` x ) e. ( Base ` K ) ) |
8 |
6 1 3 2 4
|
dihlss |
|- ( ( ( K e. HL /\ W e. H ) /\ ( `' I ` x ) e. ( Base ` K ) ) -> ( I ` ( `' I ` x ) ) e. S ) |
9 |
7 8
|
syldan |
|- ( ( ( K e. HL /\ W e. H ) /\ x e. ran I ) -> ( I ` ( `' I ` x ) ) e. S ) |
10 |
5 9
|
eqeltrrd |
|- ( ( ( K e. HL /\ W e. H ) /\ x e. ran I ) -> x e. S ) |
11 |
10
|
ex |
|- ( ( K e. HL /\ W e. H ) -> ( x e. ran I -> x e. S ) ) |
12 |
11
|
ssrdv |
|- ( ( K e. HL /\ W e. H ) -> ran I C_ S ) |