Metamath Proof Explorer


Theorem dihcnvcl

Description: Closure of isomorphism H converse. (Contributed by NM, 8-Mar-2014)

Ref Expression
Hypotheses dihfn.b 𝐵 = ( Base ‘ 𝐾 )
dihfn.h 𝐻 = ( LHyp ‘ 𝐾 )
dihfn.i 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )
Assertion dihcnvcl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) → ( 𝐼𝑋 ) ∈ 𝐵 )

Proof

Step Hyp Ref Expression
1 dihfn.b 𝐵 = ( Base ‘ 𝐾 )
2 dihfn.h 𝐻 = ( LHyp ‘ 𝐾 )
3 dihfn.i 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )
4 eqid ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
5 eqid ( LSubSp ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) = ( LSubSp ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) )
6 1 2 3 4 5 dihf11 ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → 𝐼 : 𝐵1-1→ ( LSubSp ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) )
7 f1f1orn ( 𝐼 : 𝐵1-1→ ( LSubSp ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) → 𝐼 : 𝐵1-1-onto→ ran 𝐼 )
8 6 7 syl ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → 𝐼 : 𝐵1-1-onto→ ran 𝐼 )
9 f1ocnvdm ( ( 𝐼 : 𝐵1-1-onto→ ran 𝐼𝑋 ∈ ran 𝐼 ) → ( 𝐼𝑋 ) ∈ 𝐵 )
10 8 9 sylan ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) → ( 𝐼𝑋 ) ∈ 𝐵 )