Step |
Hyp |
Ref |
Expression |
1 |
|
dihf11.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
dihf11.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
3 |
|
dihf11.i |
⊢ 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
dihf11.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
5 |
|
dihf11.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑈 ) |
6 |
1 2 3 4 5
|
dihf11lem |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → 𝐼 : 𝐵 ⟶ 𝑆 ) |
7 |
1 2 3
|
dih11 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝐼 ‘ 𝑥 ) = ( 𝐼 ‘ 𝑦 ) ↔ 𝑥 = 𝑦 ) ) |
8 |
7
|
biimpd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝐼 ‘ 𝑥 ) = ( 𝐼 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
9 |
8
|
3expb |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝐼 ‘ 𝑥 ) = ( 𝐼 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
10 |
9
|
ralrimivva |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝐼 ‘ 𝑥 ) = ( 𝐼 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
11 |
|
dff13 |
⊢ ( 𝐼 : 𝐵 –1-1→ 𝑆 ↔ ( 𝐼 : 𝐵 ⟶ 𝑆 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝐼 ‘ 𝑥 ) = ( 𝐼 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) |
12 |
6 10 11
|
sylanbrc |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → 𝐼 : 𝐵 –1-1→ 𝑆 ) |