| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dihf11.b | ⊢ 𝐵  =  ( Base ‘ 𝐾 ) | 
						
							| 2 |  | dihf11.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 3 |  | dihf11.i | ⊢ 𝐼  =  ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 4 |  | dihf11.u | ⊢ 𝑈  =  ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 5 |  | dihf11.s | ⊢ 𝑆  =  ( LSubSp ‘ 𝑈 ) | 
						
							| 6 |  | fvex | ⊢ ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 )  ∈  V | 
						
							| 7 |  | riotaex | ⊢ ( ℩ 𝑢  ∈  𝑆 ∀ 𝑞  ∈  ( Atoms ‘ 𝐾 ) ( ( ¬  𝑞 ( le ‘ 𝐾 ) 𝑊  ∧  ( 𝑞 ( join ‘ 𝐾 ) ( 𝑥 ( meet ‘ 𝐾 ) 𝑊 ) )  =  𝑥 )  →  𝑢  =  ( ( ( ( DIsoC ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑞 ) ( LSSum ‘ 𝑈 ) ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑥 ( meet ‘ 𝐾 ) 𝑊 ) ) ) ) )  ∈  V | 
						
							| 8 | 6 7 | ifex | ⊢ if ( 𝑥 ( le ‘ 𝐾 ) 𝑊 ,  ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ,  ( ℩ 𝑢  ∈  𝑆 ∀ 𝑞  ∈  ( Atoms ‘ 𝐾 ) ( ( ¬  𝑞 ( le ‘ 𝐾 ) 𝑊  ∧  ( 𝑞 ( join ‘ 𝐾 ) ( 𝑥 ( meet ‘ 𝐾 ) 𝑊 ) )  =  𝑥 )  →  𝑢  =  ( ( ( ( DIsoC ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑞 ) ( LSSum ‘ 𝑈 ) ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑥 ( meet ‘ 𝐾 ) 𝑊 ) ) ) ) ) )  ∈  V | 
						
							| 9 | 8 | rgenw | ⊢ ∀ 𝑥  ∈  𝐵 if ( 𝑥 ( le ‘ 𝐾 ) 𝑊 ,  ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ,  ( ℩ 𝑢  ∈  𝑆 ∀ 𝑞  ∈  ( Atoms ‘ 𝐾 ) ( ( ¬  𝑞 ( le ‘ 𝐾 ) 𝑊  ∧  ( 𝑞 ( join ‘ 𝐾 ) ( 𝑥 ( meet ‘ 𝐾 ) 𝑊 ) )  =  𝑥 )  →  𝑢  =  ( ( ( ( DIsoC ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑞 ) ( LSSum ‘ 𝑈 ) ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑥 ( meet ‘ 𝐾 ) 𝑊 ) ) ) ) ) )  ∈  V | 
						
							| 10 | 9 | a1i | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  →  ∀ 𝑥  ∈  𝐵 if ( 𝑥 ( le ‘ 𝐾 ) 𝑊 ,  ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ,  ( ℩ 𝑢  ∈  𝑆 ∀ 𝑞  ∈  ( Atoms ‘ 𝐾 ) ( ( ¬  𝑞 ( le ‘ 𝐾 ) 𝑊  ∧  ( 𝑞 ( join ‘ 𝐾 ) ( 𝑥 ( meet ‘ 𝐾 ) 𝑊 ) )  =  𝑥 )  →  𝑢  =  ( ( ( ( DIsoC ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑞 ) ( LSSum ‘ 𝑈 ) ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑥 ( meet ‘ 𝐾 ) 𝑊 ) ) ) ) ) )  ∈  V ) | 
						
							| 11 |  | eqid | ⊢ ( 𝑥  ∈  𝐵  ↦  if ( 𝑥 ( le ‘ 𝐾 ) 𝑊 ,  ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ,  ( ℩ 𝑢  ∈  𝑆 ∀ 𝑞  ∈  ( Atoms ‘ 𝐾 ) ( ( ¬  𝑞 ( le ‘ 𝐾 ) 𝑊  ∧  ( 𝑞 ( join ‘ 𝐾 ) ( 𝑥 ( meet ‘ 𝐾 ) 𝑊 ) )  =  𝑥 )  →  𝑢  =  ( ( ( ( DIsoC ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑞 ) ( LSSum ‘ 𝑈 ) ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑥 ( meet ‘ 𝐾 ) 𝑊 ) ) ) ) ) ) )  =  ( 𝑥  ∈  𝐵  ↦  if ( 𝑥 ( le ‘ 𝐾 ) 𝑊 ,  ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ,  ( ℩ 𝑢  ∈  𝑆 ∀ 𝑞  ∈  ( Atoms ‘ 𝐾 ) ( ( ¬  𝑞 ( le ‘ 𝐾 ) 𝑊  ∧  ( 𝑞 ( join ‘ 𝐾 ) ( 𝑥 ( meet ‘ 𝐾 ) 𝑊 ) )  =  𝑥 )  →  𝑢  =  ( ( ( ( DIsoC ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑞 ) ( LSSum ‘ 𝑈 ) ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑥 ( meet ‘ 𝐾 ) 𝑊 ) ) ) ) ) ) ) | 
						
							| 12 | 11 | mptfng | ⊢ ( ∀ 𝑥  ∈  𝐵 if ( 𝑥 ( le ‘ 𝐾 ) 𝑊 ,  ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ,  ( ℩ 𝑢  ∈  𝑆 ∀ 𝑞  ∈  ( Atoms ‘ 𝐾 ) ( ( ¬  𝑞 ( le ‘ 𝐾 ) 𝑊  ∧  ( 𝑞 ( join ‘ 𝐾 ) ( 𝑥 ( meet ‘ 𝐾 ) 𝑊 ) )  =  𝑥 )  →  𝑢  =  ( ( ( ( DIsoC ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑞 ) ( LSSum ‘ 𝑈 ) ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑥 ( meet ‘ 𝐾 ) 𝑊 ) ) ) ) ) )  ∈  V  ↔  ( 𝑥  ∈  𝐵  ↦  if ( 𝑥 ( le ‘ 𝐾 ) 𝑊 ,  ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ,  ( ℩ 𝑢  ∈  𝑆 ∀ 𝑞  ∈  ( Atoms ‘ 𝐾 ) ( ( ¬  𝑞 ( le ‘ 𝐾 ) 𝑊  ∧  ( 𝑞 ( join ‘ 𝐾 ) ( 𝑥 ( meet ‘ 𝐾 ) 𝑊 ) )  =  𝑥 )  →  𝑢  =  ( ( ( ( DIsoC ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑞 ) ( LSSum ‘ 𝑈 ) ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑥 ( meet ‘ 𝐾 ) 𝑊 ) ) ) ) ) ) )  Fn  𝐵 ) | 
						
							| 13 | 10 12 | sylib | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  →  ( 𝑥  ∈  𝐵  ↦  if ( 𝑥 ( le ‘ 𝐾 ) 𝑊 ,  ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ,  ( ℩ 𝑢  ∈  𝑆 ∀ 𝑞  ∈  ( Atoms ‘ 𝐾 ) ( ( ¬  𝑞 ( le ‘ 𝐾 ) 𝑊  ∧  ( 𝑞 ( join ‘ 𝐾 ) ( 𝑥 ( meet ‘ 𝐾 ) 𝑊 ) )  =  𝑥 )  →  𝑢  =  ( ( ( ( DIsoC ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑞 ) ( LSSum ‘ 𝑈 ) ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑥 ( meet ‘ 𝐾 ) 𝑊 ) ) ) ) ) ) )  Fn  𝐵 ) | 
						
							| 14 |  | eqid | ⊢ ( le ‘ 𝐾 )  =  ( le ‘ 𝐾 ) | 
						
							| 15 |  | eqid | ⊢ ( join ‘ 𝐾 )  =  ( join ‘ 𝐾 ) | 
						
							| 16 |  | eqid | ⊢ ( meet ‘ 𝐾 )  =  ( meet ‘ 𝐾 ) | 
						
							| 17 |  | eqid | ⊢ ( Atoms ‘ 𝐾 )  =  ( Atoms ‘ 𝐾 ) | 
						
							| 18 |  | eqid | ⊢ ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 )  =  ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 19 |  | eqid | ⊢ ( ( DIsoC ‘ 𝐾 ) ‘ 𝑊 )  =  ( ( DIsoC ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 20 |  | eqid | ⊢ ( LSSum ‘ 𝑈 )  =  ( LSSum ‘ 𝑈 ) | 
						
							| 21 | 1 14 15 16 17 2 3 18 19 4 5 20 | dihfval | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  →  𝐼  =  ( 𝑥  ∈  𝐵  ↦  if ( 𝑥 ( le ‘ 𝐾 ) 𝑊 ,  ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ,  ( ℩ 𝑢  ∈  𝑆 ∀ 𝑞  ∈  ( Atoms ‘ 𝐾 ) ( ( ¬  𝑞 ( le ‘ 𝐾 ) 𝑊  ∧  ( 𝑞 ( join ‘ 𝐾 ) ( 𝑥 ( meet ‘ 𝐾 ) 𝑊 ) )  =  𝑥 )  →  𝑢  =  ( ( ( ( DIsoC ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑞 ) ( LSSum ‘ 𝑈 ) ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑥 ( meet ‘ 𝐾 ) 𝑊 ) ) ) ) ) ) ) ) | 
						
							| 22 | 21 | fneq1d | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  →  ( 𝐼  Fn  𝐵  ↔  ( 𝑥  ∈  𝐵  ↦  if ( 𝑥 ( le ‘ 𝐾 ) 𝑊 ,  ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ,  ( ℩ 𝑢  ∈  𝑆 ∀ 𝑞  ∈  ( Atoms ‘ 𝐾 ) ( ( ¬  𝑞 ( le ‘ 𝐾 ) 𝑊  ∧  ( 𝑞 ( join ‘ 𝐾 ) ( 𝑥 ( meet ‘ 𝐾 ) 𝑊 ) )  =  𝑥 )  →  𝑢  =  ( ( ( ( DIsoC ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑞 ) ( LSSum ‘ 𝑈 ) ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑥 ( meet ‘ 𝐾 ) 𝑊 ) ) ) ) ) ) )  Fn  𝐵 ) ) | 
						
							| 23 | 13 22 | mpbird | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  →  𝐼  Fn  𝐵 ) | 
						
							| 24 | 1 2 3 4 5 | dihlss | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝑦  ∈  𝐵 )  →  ( 𝐼 ‘ 𝑦 )  ∈  𝑆 ) | 
						
							| 25 | 24 | ralrimiva | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  →  ∀ 𝑦  ∈  𝐵 ( 𝐼 ‘ 𝑦 )  ∈  𝑆 ) | 
						
							| 26 |  | fnfvrnss | ⊢ ( ( 𝐼  Fn  𝐵  ∧  ∀ 𝑦  ∈  𝐵 ( 𝐼 ‘ 𝑦 )  ∈  𝑆 )  →  ran  𝐼  ⊆  𝑆 ) | 
						
							| 27 | 23 25 26 | syl2anc | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  →  ran  𝐼  ⊆  𝑆 ) | 
						
							| 28 |  | df-f | ⊢ ( 𝐼 : 𝐵 ⟶ 𝑆  ↔  ( 𝐼  Fn  𝐵  ∧  ran  𝐼  ⊆  𝑆 ) ) | 
						
							| 29 | 23 27 28 | sylanbrc | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  →  𝐼 : 𝐵 ⟶ 𝑆 ) |