Metamath Proof Explorer


Theorem dihf11lem

Description: Functionality of the isomorphism H. (Contributed by NM, 6-Mar-2014)

Ref Expression
Hypotheses dihf11.b B = Base K
dihf11.h H = LHyp K
dihf11.i I = DIsoH K W
dihf11.u U = DVecH K W
dihf11.s S = LSubSp U
Assertion dihf11lem K HL W H I : B S

Proof

Step Hyp Ref Expression
1 dihf11.b B = Base K
2 dihf11.h H = LHyp K
3 dihf11.i I = DIsoH K W
4 dihf11.u U = DVecH K W
5 dihf11.s S = LSubSp U
6 fvex DIsoB K W x V
7 riotaex ι u S | q Atoms K ¬ q K W q join K x meet K W = x u = DIsoC K W q LSSum U DIsoB K W x meet K W V
8 6 7 ifex if x K W DIsoB K W x ι u S | q Atoms K ¬ q K W q join K x meet K W = x u = DIsoC K W q LSSum U DIsoB K W x meet K W V
9 8 rgenw x B if x K W DIsoB K W x ι u S | q Atoms K ¬ q K W q join K x meet K W = x u = DIsoC K W q LSSum U DIsoB K W x meet K W V
10 9 a1i K HL W H x B if x K W DIsoB K W x ι u S | q Atoms K ¬ q K W q join K x meet K W = x u = DIsoC K W q LSSum U DIsoB K W x meet K W V
11 eqid x B if x K W DIsoB K W x ι u S | q Atoms K ¬ q K W q join K x meet K W = x u = DIsoC K W q LSSum U DIsoB K W x meet K W = x B if x K W DIsoB K W x ι u S | q Atoms K ¬ q K W q join K x meet K W = x u = DIsoC K W q LSSum U DIsoB K W x meet K W
12 11 mptfng x B if x K W DIsoB K W x ι u S | q Atoms K ¬ q K W q join K x meet K W = x u = DIsoC K W q LSSum U DIsoB K W x meet K W V x B if x K W DIsoB K W x ι u S | q Atoms K ¬ q K W q join K x meet K W = x u = DIsoC K W q LSSum U DIsoB K W x meet K W Fn B
13 10 12 sylib K HL W H x B if x K W DIsoB K W x ι u S | q Atoms K ¬ q K W q join K x meet K W = x u = DIsoC K W q LSSum U DIsoB K W x meet K W Fn B
14 eqid K = K
15 eqid join K = join K
16 eqid meet K = meet K
17 eqid Atoms K = Atoms K
18 eqid DIsoB K W = DIsoB K W
19 eqid DIsoC K W = DIsoC K W
20 eqid LSSum U = LSSum U
21 1 14 15 16 17 2 3 18 19 4 5 20 dihfval K HL W H I = x B if x K W DIsoB K W x ι u S | q Atoms K ¬ q K W q join K x meet K W = x u = DIsoC K W q LSSum U DIsoB K W x meet K W
22 21 fneq1d K HL W H I Fn B x B if x K W DIsoB K W x ι u S | q Atoms K ¬ q K W q join K x meet K W = x u = DIsoC K W q LSSum U DIsoB K W x meet K W Fn B
23 13 22 mpbird K HL W H I Fn B
24 1 2 3 4 5 dihlss K HL W H y B I y S
25 24 ralrimiva K HL W H y B I y S
26 fnfvrnss I Fn B y B I y S ran I S
27 23 25 26 syl2anc K HL W H ran I S
28 df-f I : B S I Fn B ran I S
29 23 27 28 sylanbrc K HL W H I : B S