Step |
Hyp |
Ref |
Expression |
1 |
|
dihf11.b |
|- B = ( Base ` K ) |
2 |
|
dihf11.h |
|- H = ( LHyp ` K ) |
3 |
|
dihf11.i |
|- I = ( ( DIsoH ` K ) ` W ) |
4 |
|
dihf11.u |
|- U = ( ( DVecH ` K ) ` W ) |
5 |
|
dihf11.s |
|- S = ( LSubSp ` U ) |
6 |
|
fvex |
|- ( ( ( DIsoB ` K ) ` W ) ` x ) e. _V |
7 |
|
riotaex |
|- ( iota_ u e. S A. q e. ( Atoms ` K ) ( ( -. q ( le ` K ) W /\ ( q ( join ` K ) ( x ( meet ` K ) W ) ) = x ) -> u = ( ( ( ( DIsoC ` K ) ` W ) ` q ) ( LSSum ` U ) ( ( ( DIsoB ` K ) ` W ) ` ( x ( meet ` K ) W ) ) ) ) ) e. _V |
8 |
6 7
|
ifex |
|- if ( x ( le ` K ) W , ( ( ( DIsoB ` K ) ` W ) ` x ) , ( iota_ u e. S A. q e. ( Atoms ` K ) ( ( -. q ( le ` K ) W /\ ( q ( join ` K ) ( x ( meet ` K ) W ) ) = x ) -> u = ( ( ( ( DIsoC ` K ) ` W ) ` q ) ( LSSum ` U ) ( ( ( DIsoB ` K ) ` W ) ` ( x ( meet ` K ) W ) ) ) ) ) ) e. _V |
9 |
8
|
rgenw |
|- A. x e. B if ( x ( le ` K ) W , ( ( ( DIsoB ` K ) ` W ) ` x ) , ( iota_ u e. S A. q e. ( Atoms ` K ) ( ( -. q ( le ` K ) W /\ ( q ( join ` K ) ( x ( meet ` K ) W ) ) = x ) -> u = ( ( ( ( DIsoC ` K ) ` W ) ` q ) ( LSSum ` U ) ( ( ( DIsoB ` K ) ` W ) ` ( x ( meet ` K ) W ) ) ) ) ) ) e. _V |
10 |
9
|
a1i |
|- ( ( K e. HL /\ W e. H ) -> A. x e. B if ( x ( le ` K ) W , ( ( ( DIsoB ` K ) ` W ) ` x ) , ( iota_ u e. S A. q e. ( Atoms ` K ) ( ( -. q ( le ` K ) W /\ ( q ( join ` K ) ( x ( meet ` K ) W ) ) = x ) -> u = ( ( ( ( DIsoC ` K ) ` W ) ` q ) ( LSSum ` U ) ( ( ( DIsoB ` K ) ` W ) ` ( x ( meet ` K ) W ) ) ) ) ) ) e. _V ) |
11 |
|
eqid |
|- ( x e. B |-> if ( x ( le ` K ) W , ( ( ( DIsoB ` K ) ` W ) ` x ) , ( iota_ u e. S A. q e. ( Atoms ` K ) ( ( -. q ( le ` K ) W /\ ( q ( join ` K ) ( x ( meet ` K ) W ) ) = x ) -> u = ( ( ( ( DIsoC ` K ) ` W ) ` q ) ( LSSum ` U ) ( ( ( DIsoB ` K ) ` W ) ` ( x ( meet ` K ) W ) ) ) ) ) ) ) = ( x e. B |-> if ( x ( le ` K ) W , ( ( ( DIsoB ` K ) ` W ) ` x ) , ( iota_ u e. S A. q e. ( Atoms ` K ) ( ( -. q ( le ` K ) W /\ ( q ( join ` K ) ( x ( meet ` K ) W ) ) = x ) -> u = ( ( ( ( DIsoC ` K ) ` W ) ` q ) ( LSSum ` U ) ( ( ( DIsoB ` K ) ` W ) ` ( x ( meet ` K ) W ) ) ) ) ) ) ) |
12 |
11
|
mptfng |
|- ( A. x e. B if ( x ( le ` K ) W , ( ( ( DIsoB ` K ) ` W ) ` x ) , ( iota_ u e. S A. q e. ( Atoms ` K ) ( ( -. q ( le ` K ) W /\ ( q ( join ` K ) ( x ( meet ` K ) W ) ) = x ) -> u = ( ( ( ( DIsoC ` K ) ` W ) ` q ) ( LSSum ` U ) ( ( ( DIsoB ` K ) ` W ) ` ( x ( meet ` K ) W ) ) ) ) ) ) e. _V <-> ( x e. B |-> if ( x ( le ` K ) W , ( ( ( DIsoB ` K ) ` W ) ` x ) , ( iota_ u e. S A. q e. ( Atoms ` K ) ( ( -. q ( le ` K ) W /\ ( q ( join ` K ) ( x ( meet ` K ) W ) ) = x ) -> u = ( ( ( ( DIsoC ` K ) ` W ) ` q ) ( LSSum ` U ) ( ( ( DIsoB ` K ) ` W ) ` ( x ( meet ` K ) W ) ) ) ) ) ) ) Fn B ) |
13 |
10 12
|
sylib |
|- ( ( K e. HL /\ W e. H ) -> ( x e. B |-> if ( x ( le ` K ) W , ( ( ( DIsoB ` K ) ` W ) ` x ) , ( iota_ u e. S A. q e. ( Atoms ` K ) ( ( -. q ( le ` K ) W /\ ( q ( join ` K ) ( x ( meet ` K ) W ) ) = x ) -> u = ( ( ( ( DIsoC ` K ) ` W ) ` q ) ( LSSum ` U ) ( ( ( DIsoB ` K ) ` W ) ` ( x ( meet ` K ) W ) ) ) ) ) ) ) Fn B ) |
14 |
|
eqid |
|- ( le ` K ) = ( le ` K ) |
15 |
|
eqid |
|- ( join ` K ) = ( join ` K ) |
16 |
|
eqid |
|- ( meet ` K ) = ( meet ` K ) |
17 |
|
eqid |
|- ( Atoms ` K ) = ( Atoms ` K ) |
18 |
|
eqid |
|- ( ( DIsoB ` K ) ` W ) = ( ( DIsoB ` K ) ` W ) |
19 |
|
eqid |
|- ( ( DIsoC ` K ) ` W ) = ( ( DIsoC ` K ) ` W ) |
20 |
|
eqid |
|- ( LSSum ` U ) = ( LSSum ` U ) |
21 |
1 14 15 16 17 2 3 18 19 4 5 20
|
dihfval |
|- ( ( K e. HL /\ W e. H ) -> I = ( x e. B |-> if ( x ( le ` K ) W , ( ( ( DIsoB ` K ) ` W ) ` x ) , ( iota_ u e. S A. q e. ( Atoms ` K ) ( ( -. q ( le ` K ) W /\ ( q ( join ` K ) ( x ( meet ` K ) W ) ) = x ) -> u = ( ( ( ( DIsoC ` K ) ` W ) ` q ) ( LSSum ` U ) ( ( ( DIsoB ` K ) ` W ) ` ( x ( meet ` K ) W ) ) ) ) ) ) ) ) |
22 |
21
|
fneq1d |
|- ( ( K e. HL /\ W e. H ) -> ( I Fn B <-> ( x e. B |-> if ( x ( le ` K ) W , ( ( ( DIsoB ` K ) ` W ) ` x ) , ( iota_ u e. S A. q e. ( Atoms ` K ) ( ( -. q ( le ` K ) W /\ ( q ( join ` K ) ( x ( meet ` K ) W ) ) = x ) -> u = ( ( ( ( DIsoC ` K ) ` W ) ` q ) ( LSSum ` U ) ( ( ( DIsoB ` K ) ` W ) ` ( x ( meet ` K ) W ) ) ) ) ) ) ) Fn B ) ) |
23 |
13 22
|
mpbird |
|- ( ( K e. HL /\ W e. H ) -> I Fn B ) |
24 |
1 2 3 4 5
|
dihlss |
|- ( ( ( K e. HL /\ W e. H ) /\ y e. B ) -> ( I ` y ) e. S ) |
25 |
24
|
ralrimiva |
|- ( ( K e. HL /\ W e. H ) -> A. y e. B ( I ` y ) e. S ) |
26 |
|
fnfvrnss |
|- ( ( I Fn B /\ A. y e. B ( I ` y ) e. S ) -> ran I C_ S ) |
27 |
23 25 26
|
syl2anc |
|- ( ( K e. HL /\ W e. H ) -> ran I C_ S ) |
28 |
|
df-f |
|- ( I : B --> S <-> ( I Fn B /\ ran I C_ S ) ) |
29 |
23 27 28
|
sylanbrc |
|- ( ( K e. HL /\ W e. H ) -> I : B --> S ) |