Step |
Hyp |
Ref |
Expression |
1 |
|
dihf11.b |
|- B = ( Base ` K ) |
2 |
|
dihf11.h |
|- H = ( LHyp ` K ) |
3 |
|
dihf11.i |
|- I = ( ( DIsoH ` K ) ` W ) |
4 |
|
dihf11.u |
|- U = ( ( DVecH ` K ) ` W ) |
5 |
|
dihf11.s |
|- S = ( LSubSp ` U ) |
6 |
1 2 3 4 5
|
dihf11lem |
|- ( ( K e. HL /\ W e. H ) -> I : B --> S ) |
7 |
1 2 3
|
dih11 |
|- ( ( ( K e. HL /\ W e. H ) /\ x e. B /\ y e. B ) -> ( ( I ` x ) = ( I ` y ) <-> x = y ) ) |
8 |
7
|
biimpd |
|- ( ( ( K e. HL /\ W e. H ) /\ x e. B /\ y e. B ) -> ( ( I ` x ) = ( I ` y ) -> x = y ) ) |
9 |
8
|
3expb |
|- ( ( ( K e. HL /\ W e. H ) /\ ( x e. B /\ y e. B ) ) -> ( ( I ` x ) = ( I ` y ) -> x = y ) ) |
10 |
9
|
ralrimivva |
|- ( ( K e. HL /\ W e. H ) -> A. x e. B A. y e. B ( ( I ` x ) = ( I ` y ) -> x = y ) ) |
11 |
|
dff13 |
|- ( I : B -1-1-> S <-> ( I : B --> S /\ A. x e. B A. y e. B ( ( I ` x ) = ( I ` y ) -> x = y ) ) ) |
12 |
6 10 11
|
sylanbrc |
|- ( ( K e. HL /\ W e. H ) -> I : B -1-1-> S ) |