Description: Functionality and domain of isomorphism H. (Contributed by NM, 9-Mar-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dihfn.b | |- B = ( Base ` K ) |
|
dihfn.h | |- H = ( LHyp ` K ) |
||
dihfn.i | |- I = ( ( DIsoH ` K ) ` W ) |
||
Assertion | dihfn | |- ( ( K e. HL /\ W e. H ) -> I Fn B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dihfn.b | |- B = ( Base ` K ) |
|
2 | dihfn.h | |- H = ( LHyp ` K ) |
|
3 | dihfn.i | |- I = ( ( DIsoH ` K ) ` W ) |
|
4 | eqid | |- ( ( DVecH ` K ) ` W ) = ( ( DVecH ` K ) ` W ) |
|
5 | eqid | |- ( LSubSp ` ( ( DVecH ` K ) ` W ) ) = ( LSubSp ` ( ( DVecH ` K ) ` W ) ) |
|
6 | 1 2 3 4 5 | dihf11 | |- ( ( K e. HL /\ W e. H ) -> I : B -1-1-> ( LSubSp ` ( ( DVecH ` K ) ` W ) ) ) |
7 | f1fn | |- ( I : B -1-1-> ( LSubSp ` ( ( DVecH ` K ) ` W ) ) -> I Fn B ) |
|
8 | 6 7 | syl | |- ( ( K e. HL /\ W e. H ) -> I Fn B ) |