Metamath Proof Explorer


Theorem dihdm

Description: Domain of isomorphism H. (Contributed by NM, 9-Mar-2014)

Ref Expression
Hypotheses dihfn.b
|- B = ( Base ` K )
dihfn.h
|- H = ( LHyp ` K )
dihfn.i
|- I = ( ( DIsoH ` K ) ` W )
Assertion dihdm
|- ( ( K e. HL /\ W e. H ) -> dom I = B )

Proof

Step Hyp Ref Expression
1 dihfn.b
 |-  B = ( Base ` K )
2 dihfn.h
 |-  H = ( LHyp ` K )
3 dihfn.i
 |-  I = ( ( DIsoH ` K ) ` W )
4 1 2 3 dihfn
 |-  ( ( K e. HL /\ W e. H ) -> I Fn B )
5 4 fndmd
 |-  ( ( K e. HL /\ W e. H ) -> dom I = B )