Description: Domain of isomorphism H. (Contributed by NM, 9-Mar-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dihfn.b | |- B = ( Base ` K ) |
|
dihfn.h | |- H = ( LHyp ` K ) |
||
dihfn.i | |- I = ( ( DIsoH ` K ) ` W ) |
||
Assertion | dihdm | |- ( ( K e. HL /\ W e. H ) -> dom I = B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dihfn.b | |- B = ( Base ` K ) |
|
2 | dihfn.h | |- H = ( LHyp ` K ) |
|
3 | dihfn.i | |- I = ( ( DIsoH ` K ) ` W ) |
|
4 | 1 2 3 | dihfn | |- ( ( K e. HL /\ W e. H ) -> I Fn B ) |
5 | 4 | fndmd | |- ( ( K e. HL /\ W e. H ) -> dom I = B ) |