Metamath Proof Explorer


Theorem dihdm

Description: Domain of isomorphism H. (Contributed by NM, 9-Mar-2014)

Ref Expression
Hypotheses dihfn.b B = Base K
dihfn.h H = LHyp K
dihfn.i I = DIsoH K W
Assertion dihdm K HL W H dom I = B

Proof

Step Hyp Ref Expression
1 dihfn.b B = Base K
2 dihfn.h H = LHyp K
3 dihfn.i I = DIsoH K W
4 1 2 3 dihfn K HL W H I Fn B
5 4 fndmd K HL W H dom I = B