Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Construction of a vector space from a Hilbert lattice
dihdm
Next ⟩
dihcl
Metamath Proof Explorer
Ascii
Unicode
Theorem
dihdm
Description:
Domain of isomorphism H.
(Contributed by
NM
, 9-Mar-2014)
Ref
Expression
Hypotheses
dihfn.b
⊢
B
=
Base
K
dihfn.h
⊢
H
=
LHyp
⁡
K
dihfn.i
⊢
I
=
DIsoH
⁡
K
⁡
W
Assertion
dihdm
⊢
K
∈
HL
∧
W
∈
H
→
dom
⁡
I
=
B
Proof
Step
Hyp
Ref
Expression
1
dihfn.b
⊢
B
=
Base
K
2
dihfn.h
⊢
H
=
LHyp
⁡
K
3
dihfn.i
⊢
I
=
DIsoH
⁡
K
⁡
W
4
1
2
3
dihfn
⊢
K
∈
HL
∧
W
∈
H
→
I
Fn
B
5
4
fndmd
⊢
K
∈
HL
∧
W
∈
H
→
dom
⁡
I
=
B