Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Construction of a vector space from a Hilbert lattice
dihcl
Next ⟩
dihcnvcl
Metamath Proof Explorer
Ascii
Unicode
Theorem
dihcl
Description:
Closure of isomorphism H.
(Contributed by
NM
, 8-Mar-2014)
Ref
Expression
Hypotheses
dihfn.b
⊢
B
=
Base
K
dihfn.h
⊢
H
=
LHyp
⁡
K
dihfn.i
⊢
I
=
DIsoH
⁡
K
⁡
W
Assertion
dihcl
⊢
K
∈
HL
∧
W
∈
H
∧
X
∈
B
→
I
⁡
X
∈
ran
⁡
I
Proof
Step
Hyp
Ref
Expression
1
dihfn.b
⊢
B
=
Base
K
2
dihfn.h
⊢
H
=
LHyp
⁡
K
3
dihfn.i
⊢
I
=
DIsoH
⁡
K
⁡
W
4
eqid
⊢
DVecH
⁡
K
⁡
W
=
DVecH
⁡
K
⁡
W
5
eqid
⊢
LSubSp
⁡
DVecH
⁡
K
⁡
W
=
LSubSp
⁡
DVecH
⁡
K
⁡
W
6
1
2
3
4
5
dihf11
⊢
K
∈
HL
∧
W
∈
H
→
I
:
B
⟶
1-1
LSubSp
⁡
DVecH
⁡
K
⁡
W
7
6
adantr
⊢
K
∈
HL
∧
W
∈
H
∧
X
∈
B
→
I
:
B
⟶
1-1
LSubSp
⁡
DVecH
⁡
K
⁡
W
8
f1fn
⊢
I
:
B
⟶
1-1
LSubSp
⁡
DVecH
⁡
K
⁡
W
→
I
Fn
B
9
7
8
syl
⊢
K
∈
HL
∧
W
∈
H
∧
X
∈
B
→
I
Fn
B
10
fnfvelrn
⊢
I
Fn
B
∧
X
∈
B
→
I
⁡
X
∈
ran
⁡
I
11
9
10
sylancom
⊢
K
∈
HL
∧
W
∈
H
∧
X
∈
B
→
I
⁡
X
∈
ran
⁡
I