Metamath Proof Explorer


Theorem dihcl

Description: Closure of isomorphism H. (Contributed by NM, 8-Mar-2014)

Ref Expression
Hypotheses dihfn.b B = Base K
dihfn.h H = LHyp K
dihfn.i I = DIsoH K W
Assertion dihcl K HL W H X B I X ran I

Proof

Step Hyp Ref Expression
1 dihfn.b B = Base K
2 dihfn.h H = LHyp K
3 dihfn.i I = DIsoH K W
4 eqid DVecH K W = DVecH K W
5 eqid LSubSp DVecH K W = LSubSp DVecH K W
6 1 2 3 4 5 dihf11 K HL W H I : B 1-1 LSubSp DVecH K W
7 6 adantr K HL W H X B I : B 1-1 LSubSp DVecH K W
8 f1fn I : B 1-1 LSubSp DVecH K W I Fn B
9 7 8 syl K HL W H X B I Fn B
10 fnfvelrn I Fn B X B I X ran I
11 9 10 sylancom K HL W H X B I X ran I