Metamath Proof Explorer


Theorem dihcl

Description: Closure of isomorphism H. (Contributed by NM, 8-Mar-2014)

Ref Expression
Hypotheses dihfn.b 𝐵 = ( Base ‘ 𝐾 )
dihfn.h 𝐻 = ( LHyp ‘ 𝐾 )
dihfn.i 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )
Assertion dihcl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋𝐵 ) → ( 𝐼𝑋 ) ∈ ran 𝐼 )

Proof

Step Hyp Ref Expression
1 dihfn.b 𝐵 = ( Base ‘ 𝐾 )
2 dihfn.h 𝐻 = ( LHyp ‘ 𝐾 )
3 dihfn.i 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )
4 eqid ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
5 eqid ( LSubSp ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) = ( LSubSp ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) )
6 1 2 3 4 5 dihf11 ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → 𝐼 : 𝐵1-1→ ( LSubSp ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) )
7 6 adantr ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋𝐵 ) → 𝐼 : 𝐵1-1→ ( LSubSp ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) )
8 f1fn ( 𝐼 : 𝐵1-1→ ( LSubSp ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) → 𝐼 Fn 𝐵 )
9 7 8 syl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋𝐵 ) → 𝐼 Fn 𝐵 )
10 fnfvelrn ( ( 𝐼 Fn 𝐵𝑋𝐵 ) → ( 𝐼𝑋 ) ∈ ran 𝐼 )
11 9 10 sylancom ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋𝐵 ) → ( 𝐼𝑋 ) ∈ ran 𝐼 )