Step |
Hyp |
Ref |
Expression |
1 |
|
dihfn.b |
|- B = ( Base ` K ) |
2 |
|
dihfn.h |
|- H = ( LHyp ` K ) |
3 |
|
dihfn.i |
|- I = ( ( DIsoH ` K ) ` W ) |
4 |
|
eqid |
|- ( ( DVecH ` K ) ` W ) = ( ( DVecH ` K ) ` W ) |
5 |
|
eqid |
|- ( LSubSp ` ( ( DVecH ` K ) ` W ) ) = ( LSubSp ` ( ( DVecH ` K ) ` W ) ) |
6 |
1 2 3 4 5
|
dihf11 |
|- ( ( K e. HL /\ W e. H ) -> I : B -1-1-> ( LSubSp ` ( ( DVecH ` K ) ` W ) ) ) |
7 |
6
|
adantr |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. B ) -> I : B -1-1-> ( LSubSp ` ( ( DVecH ` K ) ` W ) ) ) |
8 |
|
f1fn |
|- ( I : B -1-1-> ( LSubSp ` ( ( DVecH ` K ) ` W ) ) -> I Fn B ) |
9 |
7 8
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. B ) -> I Fn B ) |
10 |
|
fnfvelrn |
|- ( ( I Fn B /\ X e. B ) -> ( I ` X ) e. ran I ) |
11 |
9 10
|
sylancom |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. B ) -> ( I ` X ) e. ran I ) |