Metamath Proof Explorer


Theorem dihcnvcl

Description: Closure of isomorphism H converse. (Contributed by NM, 8-Mar-2014)

Ref Expression
Hypotheses dihfn.b B = Base K
dihfn.h H = LHyp K
dihfn.i I = DIsoH K W
Assertion dihcnvcl K HL W H X ran I I -1 X B

Proof

Step Hyp Ref Expression
1 dihfn.b B = Base K
2 dihfn.h H = LHyp K
3 dihfn.i I = DIsoH K W
4 eqid DVecH K W = DVecH K W
5 eqid LSubSp DVecH K W = LSubSp DVecH K W
6 1 2 3 4 5 dihf11 K HL W H I : B 1-1 LSubSp DVecH K W
7 f1f1orn I : B 1-1 LSubSp DVecH K W I : B 1-1 onto ran I
8 6 7 syl K HL W H I : B 1-1 onto ran I
9 f1ocnvdm I : B 1-1 onto ran I X ran I I -1 X B
10 8 9 sylan K HL W H X ran I I -1 X B