Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Construction of a vector space from a Hilbert lattice
dihcnvid1
Next ⟩
dihcnvid2
Metamath Proof Explorer
Ascii
Unicode
Theorem
dihcnvid1
Description:
The converse isomorphism of an isomorphism.
(Contributed by
NM
, 5-Aug-2014)
Ref
Expression
Hypotheses
dihcnvid1.b
⊢
B
=
Base
K
dihcnvid1.h
⊢
H
=
LHyp
⁡
K
dihcnvid1.i
⊢
I
=
DIsoH
⁡
K
⁡
W
Assertion
dihcnvid1
⊢
K
∈
HL
∧
W
∈
H
∧
X
∈
B
→
I
-1
⁡
I
⁡
X
=
X
Proof
Step
Hyp
Ref
Expression
1
dihcnvid1.b
⊢
B
=
Base
K
2
dihcnvid1.h
⊢
H
=
LHyp
⁡
K
3
dihcnvid1.i
⊢
I
=
DIsoH
⁡
K
⁡
W
4
eqid
⊢
DVecH
⁡
K
⁡
W
=
DVecH
⁡
K
⁡
W
5
eqid
⊢
LSubSp
⁡
DVecH
⁡
K
⁡
W
=
LSubSp
⁡
DVecH
⁡
K
⁡
W
6
1
2
3
4
5
dihf11
⊢
K
∈
HL
∧
W
∈
H
→
I
:
B
⟶
1-1
LSubSp
⁡
DVecH
⁡
K
⁡
W
7
f1f1orn
⊢
I
:
B
⟶
1-1
LSubSp
⁡
DVecH
⁡
K
⁡
W
→
I
:
B
⟶
1-1 onto
ran
⁡
I
8
6
7
syl
⊢
K
∈
HL
∧
W
∈
H
→
I
:
B
⟶
1-1 onto
ran
⁡
I
9
f1ocnvfv1
⊢
I
:
B
⟶
1-1 onto
ran
⁡
I
∧
X
∈
B
→
I
-1
⁡
I
⁡
X
=
X
10
8
9
sylan
⊢
K
∈
HL
∧
W
∈
H
∧
X
∈
B
→
I
-1
⁡
I
⁡
X
=
X