Metamath Proof Explorer


Theorem dihcnvid1

Description: The converse isomorphism of an isomorphism. (Contributed by NM, 5-Aug-2014)

Ref Expression
Hypotheses dihcnvid1.b B = Base K
dihcnvid1.h H = LHyp K
dihcnvid1.i I = DIsoH K W
Assertion dihcnvid1 K HL W H X B I -1 I X = X

Proof

Step Hyp Ref Expression
1 dihcnvid1.b B = Base K
2 dihcnvid1.h H = LHyp K
3 dihcnvid1.i I = DIsoH K W
4 eqid DVecH K W = DVecH K W
5 eqid LSubSp DVecH K W = LSubSp DVecH K W
6 1 2 3 4 5 dihf11 K HL W H I : B 1-1 LSubSp DVecH K W
7 f1f1orn I : B 1-1 LSubSp DVecH K W I : B 1-1 onto ran I
8 6 7 syl K HL W H I : B 1-1 onto ran I
9 f1ocnvfv1 I : B 1-1 onto ran I X B I -1 I X = X
10 8 9 sylan K HL W H X B I -1 I X = X