Metamath Proof Explorer


Theorem dihfn

Description: Functionality and domain of isomorphism H. (Contributed by NM, 9-Mar-2014)

Ref Expression
Hypotheses dihfn.b B = Base K
dihfn.h H = LHyp K
dihfn.i I = DIsoH K W
Assertion dihfn K HL W H I Fn B

Proof

Step Hyp Ref Expression
1 dihfn.b B = Base K
2 dihfn.h H = LHyp K
3 dihfn.i I = DIsoH K W
4 eqid DVecH K W = DVecH K W
5 eqid LSubSp DVecH K W = LSubSp DVecH K W
6 1 2 3 4 5 dihf11 K HL W H I : B 1-1 LSubSp DVecH K W
7 f1fn I : B 1-1 LSubSp DVecH K W I Fn B
8 6 7 syl K HL W H I Fn B