Description: Functionality and domain of isomorphism H. (Contributed by NM, 9-Mar-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dihfn.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
dihfn.h | ⊢ 𝐻 = ( LHyp ‘ 𝐾 ) | ||
dihfn.i | ⊢ 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) | ||
Assertion | dihfn | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → 𝐼 Fn 𝐵 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dihfn.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
2 | dihfn.h | ⊢ 𝐻 = ( LHyp ‘ 𝐾 ) | |
3 | dihfn.i | ⊢ 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) | |
4 | eqid | ⊢ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | |
5 | eqid | ⊢ ( LSubSp ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) = ( LSubSp ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) | |
6 | 1 2 3 4 5 | dihf11 | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → 𝐼 : 𝐵 –1-1→ ( LSubSp ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
7 | f1fn | ⊢ ( 𝐼 : 𝐵 –1-1→ ( LSubSp ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) → 𝐼 Fn 𝐵 ) | |
8 | 6 7 | syl | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → 𝐼 Fn 𝐵 ) |