Metamath Proof Explorer


Theorem dihdm

Description: Domain of isomorphism H. (Contributed by NM, 9-Mar-2014)

Ref Expression
Hypotheses dihfn.b 𝐵 = ( Base ‘ 𝐾 )
dihfn.h 𝐻 = ( LHyp ‘ 𝐾 )
dihfn.i 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )
Assertion dihdm ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → dom 𝐼 = 𝐵 )

Proof

Step Hyp Ref Expression
1 dihfn.b 𝐵 = ( Base ‘ 𝐾 )
2 dihfn.h 𝐻 = ( LHyp ‘ 𝐾 )
3 dihfn.i 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )
4 1 2 3 dihfn ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → 𝐼 Fn 𝐵 )
5 4 fndmd ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → dom 𝐼 = 𝐵 )