Description: Domain of isomorphism H. (Contributed by NM, 9-Mar-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dihfn.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
dihfn.h | ⊢ 𝐻 = ( LHyp ‘ 𝐾 ) | ||
dihfn.i | ⊢ 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) | ||
Assertion | dihdm | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → dom 𝐼 = 𝐵 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dihfn.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
2 | dihfn.h | ⊢ 𝐻 = ( LHyp ‘ 𝐾 ) | |
3 | dihfn.i | ⊢ 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) | |
4 | 1 2 3 | dihfn | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → 𝐼 Fn 𝐵 ) |
5 | 4 | fndmd | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → dom 𝐼 = 𝐵 ) |