| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dihcnvord.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
| 2 |
|
dihcnvord.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 3 |
|
dihcnvord.i |
⊢ 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) |
| 4 |
|
dihcnvord.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 5 |
|
dihcnvord.x |
⊢ ( 𝜑 → 𝑋 ∈ ran 𝐼 ) |
| 6 |
|
dihcnvord.y |
⊢ ( 𝜑 → 𝑌 ∈ ran 𝐼 ) |
| 7 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
| 8 |
7 2 3
|
dihcnvcl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) → ( ◡ 𝐼 ‘ 𝑋 ) ∈ ( Base ‘ 𝐾 ) ) |
| 9 |
4 5 8
|
syl2anc |
⊢ ( 𝜑 → ( ◡ 𝐼 ‘ 𝑋 ) ∈ ( Base ‘ 𝐾 ) ) |
| 10 |
7 2 3
|
dihcnvcl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑌 ∈ ran 𝐼 ) → ( ◡ 𝐼 ‘ 𝑌 ) ∈ ( Base ‘ 𝐾 ) ) |
| 11 |
4 6 10
|
syl2anc |
⊢ ( 𝜑 → ( ◡ 𝐼 ‘ 𝑌 ) ∈ ( Base ‘ 𝐾 ) ) |
| 12 |
7 1 2 3
|
dihord |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ◡ 𝐼 ‘ 𝑋 ) ∈ ( Base ‘ 𝐾 ) ∧ ( ◡ 𝐼 ‘ 𝑌 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝐼 ‘ ( ◡ 𝐼 ‘ 𝑋 ) ) ⊆ ( 𝐼 ‘ ( ◡ 𝐼 ‘ 𝑌 ) ) ↔ ( ◡ 𝐼 ‘ 𝑋 ) ≤ ( ◡ 𝐼 ‘ 𝑌 ) ) ) |
| 13 |
4 9 11 12
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐼 ‘ ( ◡ 𝐼 ‘ 𝑋 ) ) ⊆ ( 𝐼 ‘ ( ◡ 𝐼 ‘ 𝑌 ) ) ↔ ( ◡ 𝐼 ‘ 𝑋 ) ≤ ( ◡ 𝐼 ‘ 𝑌 ) ) ) |
| 14 |
2 3
|
dihcnvid2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) → ( 𝐼 ‘ ( ◡ 𝐼 ‘ 𝑋 ) ) = 𝑋 ) |
| 15 |
4 5 14
|
syl2anc |
⊢ ( 𝜑 → ( 𝐼 ‘ ( ◡ 𝐼 ‘ 𝑋 ) ) = 𝑋 ) |
| 16 |
2 3
|
dihcnvid2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑌 ∈ ran 𝐼 ) → ( 𝐼 ‘ ( ◡ 𝐼 ‘ 𝑌 ) ) = 𝑌 ) |
| 17 |
4 6 16
|
syl2anc |
⊢ ( 𝜑 → ( 𝐼 ‘ ( ◡ 𝐼 ‘ 𝑌 ) ) = 𝑌 ) |
| 18 |
15 17
|
sseq12d |
⊢ ( 𝜑 → ( ( 𝐼 ‘ ( ◡ 𝐼 ‘ 𝑋 ) ) ⊆ ( 𝐼 ‘ ( ◡ 𝐼 ‘ 𝑌 ) ) ↔ 𝑋 ⊆ 𝑌 ) ) |
| 19 |
13 18
|
bitr3d |
⊢ ( 𝜑 → ( ( ◡ 𝐼 ‘ 𝑋 ) ≤ ( ◡ 𝐼 ‘ 𝑌 ) ↔ 𝑋 ⊆ 𝑌 ) ) |