Metamath Proof Explorer


Theorem dihcnvord

Description: Ordering property for converse of isomorphism H. (Contributed by NM, 17-Aug-2014)

Ref Expression
Hypotheses dihcnvord.l = ( le ‘ 𝐾 )
dihcnvord.h 𝐻 = ( LHyp ‘ 𝐾 )
dihcnvord.i 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )
dihcnvord.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
dihcnvord.x ( 𝜑𝑋 ∈ ran 𝐼 )
dihcnvord.y ( 𝜑𝑌 ∈ ran 𝐼 )
Assertion dihcnvord ( 𝜑 → ( ( 𝐼𝑋 ) ( 𝐼𝑌 ) ↔ 𝑋𝑌 ) )

Proof

Step Hyp Ref Expression
1 dihcnvord.l = ( le ‘ 𝐾 )
2 dihcnvord.h 𝐻 = ( LHyp ‘ 𝐾 )
3 dihcnvord.i 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )
4 dihcnvord.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
5 dihcnvord.x ( 𝜑𝑋 ∈ ran 𝐼 )
6 dihcnvord.y ( 𝜑𝑌 ∈ ran 𝐼 )
7 eqid ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 )
8 7 2 3 dihcnvcl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) → ( 𝐼𝑋 ) ∈ ( Base ‘ 𝐾 ) )
9 4 5 8 syl2anc ( 𝜑 → ( 𝐼𝑋 ) ∈ ( Base ‘ 𝐾 ) )
10 7 2 3 dihcnvcl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑌 ∈ ran 𝐼 ) → ( 𝐼𝑌 ) ∈ ( Base ‘ 𝐾 ) )
11 4 6 10 syl2anc ( 𝜑 → ( 𝐼𝑌 ) ∈ ( Base ‘ 𝐾 ) )
12 7 1 2 3 dihord ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐼𝑋 ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝐼𝑌 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝐼 ‘ ( 𝐼𝑋 ) ) ⊆ ( 𝐼 ‘ ( 𝐼𝑌 ) ) ↔ ( 𝐼𝑋 ) ( 𝐼𝑌 ) ) )
13 4 9 11 12 syl3anc ( 𝜑 → ( ( 𝐼 ‘ ( 𝐼𝑋 ) ) ⊆ ( 𝐼 ‘ ( 𝐼𝑌 ) ) ↔ ( 𝐼𝑋 ) ( 𝐼𝑌 ) ) )
14 2 3 dihcnvid2 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) → ( 𝐼 ‘ ( 𝐼𝑋 ) ) = 𝑋 )
15 4 5 14 syl2anc ( 𝜑 → ( 𝐼 ‘ ( 𝐼𝑋 ) ) = 𝑋 )
16 2 3 dihcnvid2 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑌 ∈ ran 𝐼 ) → ( 𝐼 ‘ ( 𝐼𝑌 ) ) = 𝑌 )
17 4 6 16 syl2anc ( 𝜑 → ( 𝐼 ‘ ( 𝐼𝑌 ) ) = 𝑌 )
18 15 17 sseq12d ( 𝜑 → ( ( 𝐼 ‘ ( 𝐼𝑋 ) ) ⊆ ( 𝐼 ‘ ( 𝐼𝑌 ) ) ↔ 𝑋𝑌 ) )
19 13 18 bitr3d ( 𝜑 → ( ( 𝐼𝑋 ) ( 𝐼𝑌 ) ↔ 𝑋𝑌 ) )