Step |
Hyp |
Ref |
Expression |
1 |
|
dihord.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
dihord.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
dihord.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
4 |
|
dihord.i |
⊢ 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) |
5 |
|
simpl1 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
6 |
|
simpl2 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ) ) → 𝑋 ∈ 𝐵 ) |
7 |
|
simprl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ) ) → 𝑋 ≤ 𝑊 ) |
8 |
|
simpl3 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ) ) → 𝑌 ∈ 𝐵 ) |
9 |
|
simprr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ) ) → 𝑌 ≤ 𝑊 ) |
10 |
1 2 3 4
|
dihord3 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) → ( ( 𝐼 ‘ 𝑋 ) ⊆ ( 𝐼 ‘ 𝑌 ) ↔ 𝑋 ≤ 𝑌 ) ) |
11 |
5 6 7 8 9 10
|
syl122anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ) ) → ( ( 𝐼 ‘ 𝑋 ) ⊆ ( 𝐼 ‘ 𝑌 ) ↔ 𝑋 ≤ 𝑌 ) ) |
12 |
|
simpl1 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑋 ≤ 𝑊 ∧ ¬ 𝑌 ≤ 𝑊 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
13 |
|
simpl2 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑋 ≤ 𝑊 ∧ ¬ 𝑌 ≤ 𝑊 ) ) → 𝑋 ∈ 𝐵 ) |
14 |
|
simprl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑋 ≤ 𝑊 ∧ ¬ 𝑌 ≤ 𝑊 ) ) → 𝑋 ≤ 𝑊 ) |
15 |
|
simpl3 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑋 ≤ 𝑊 ∧ ¬ 𝑌 ≤ 𝑊 ) ) → 𝑌 ∈ 𝐵 ) |
16 |
|
simprr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑋 ≤ 𝑊 ∧ ¬ 𝑌 ≤ 𝑊 ) ) → ¬ 𝑌 ≤ 𝑊 ) |
17 |
1 2 3 4
|
dihord5a |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊 ) ) ∧ ( 𝐼 ‘ 𝑋 ) ⊆ ( 𝐼 ‘ 𝑌 ) ) → 𝑋 ≤ 𝑌 ) |
18 |
1 2 3 4
|
dihord5b |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊 ) ) ∧ 𝑋 ≤ 𝑌 ) → ( 𝐼 ‘ 𝑋 ) ⊆ ( 𝐼 ‘ 𝑌 ) ) |
19 |
17 18
|
impbida |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊 ) ) → ( ( 𝐼 ‘ 𝑋 ) ⊆ ( 𝐼 ‘ 𝑌 ) ↔ 𝑋 ≤ 𝑌 ) ) |
20 |
12 13 14 15 16 19
|
syl122anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑋 ≤ 𝑊 ∧ ¬ 𝑌 ≤ 𝑊 ) ) → ( ( 𝐼 ‘ 𝑋 ) ⊆ ( 𝐼 ‘ 𝑌 ) ↔ 𝑋 ≤ 𝑌 ) ) |
21 |
|
simpl1 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( ¬ 𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
22 |
|
simpl2 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( ¬ 𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ) ) → 𝑋 ∈ 𝐵 ) |
23 |
|
simprl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( ¬ 𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ) ) → ¬ 𝑋 ≤ 𝑊 ) |
24 |
|
simpl3 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( ¬ 𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ) ) → 𝑌 ∈ 𝐵 ) |
25 |
|
simprr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( ¬ 𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ) ) → 𝑌 ≤ 𝑊 ) |
26 |
1 2 3 4
|
dihord6a |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) ∧ ( 𝐼 ‘ 𝑋 ) ⊆ ( 𝐼 ‘ 𝑌 ) ) → 𝑋 ≤ 𝑌 ) |
27 |
1 2 3 4
|
dihord6b |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) ∧ 𝑋 ≤ 𝑌 ) → ( 𝐼 ‘ 𝑋 ) ⊆ ( 𝐼 ‘ 𝑌 ) ) |
28 |
26 27
|
impbida |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) → ( ( 𝐼 ‘ 𝑋 ) ⊆ ( 𝐼 ‘ 𝑌 ) ↔ 𝑋 ≤ 𝑌 ) ) |
29 |
21 22 23 24 25 28
|
syl122anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( ¬ 𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ) ) → ( ( 𝐼 ‘ 𝑋 ) ⊆ ( 𝐼 ‘ 𝑌 ) ↔ 𝑋 ≤ 𝑌 ) ) |
30 |
|
simpl1 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( ¬ 𝑋 ≤ 𝑊 ∧ ¬ 𝑌 ≤ 𝑊 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
31 |
|
simpl2 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( ¬ 𝑋 ≤ 𝑊 ∧ ¬ 𝑌 ≤ 𝑊 ) ) → 𝑋 ∈ 𝐵 ) |
32 |
|
simprl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( ¬ 𝑋 ≤ 𝑊 ∧ ¬ 𝑌 ≤ 𝑊 ) ) → ¬ 𝑋 ≤ 𝑊 ) |
33 |
|
simpl3 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( ¬ 𝑋 ≤ 𝑊 ∧ ¬ 𝑌 ≤ 𝑊 ) ) → 𝑌 ∈ 𝐵 ) |
34 |
|
simprr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( ¬ 𝑋 ≤ 𝑊 ∧ ¬ 𝑌 ≤ 𝑊 ) ) → ¬ 𝑌 ≤ 𝑊 ) |
35 |
1 2 3 4
|
dihord4 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊 ) ) → ( ( 𝐼 ‘ 𝑋 ) ⊆ ( 𝐼 ‘ 𝑌 ) ↔ 𝑋 ≤ 𝑌 ) ) |
36 |
30 31 32 33 34 35
|
syl122anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( ¬ 𝑋 ≤ 𝑊 ∧ ¬ 𝑌 ≤ 𝑊 ) ) → ( ( 𝐼 ‘ 𝑋 ) ⊆ ( 𝐼 ‘ 𝑌 ) ↔ 𝑋 ≤ 𝑌 ) ) |
37 |
11 20 29 36
|
4casesdan |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝐼 ‘ 𝑋 ) ⊆ ( 𝐼 ‘ 𝑌 ) ↔ 𝑋 ≤ 𝑌 ) ) |