Metamath Proof Explorer


Theorem dihord6a

Description: Part of proof that isomorphism H is order-preserving . (Contributed by NM, 7-Mar-2014)

Ref Expression
Hypotheses dihord3.b 𝐵 = ( Base ‘ 𝐾 )
dihord3.l = ( le ‘ 𝐾 )
dihord3.h 𝐻 = ( LHyp ‘ 𝐾 )
dihord3.i 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )
Assertion dihord6a ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑌𝐵𝑌 𝑊 ) ) ∧ ( 𝐼𝑋 ) ⊆ ( 𝐼𝑌 ) ) → 𝑋 𝑌 )

Proof

Step Hyp Ref Expression
1 dihord3.b 𝐵 = ( Base ‘ 𝐾 )
2 dihord3.l = ( le ‘ 𝐾 )
3 dihord3.h 𝐻 = ( LHyp ‘ 𝐾 )
4 dihord3.i 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )
5 eqid ( Atoms ‘ 𝐾 ) = ( Atoms ‘ 𝐾 )
6 eqid ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) = ( ( oc ‘ 𝐾 ) ‘ 𝑊 )
7 eqid ( ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ 𝐵 ) ) = ( ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ 𝐵 ) )
8 eqid ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
9 eqid ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 )
10 eqid ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
11 eqid ( LSSum ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) = ( LSSum ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) )
12 eqid ( ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) = 𝑞 ) = ( ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) = 𝑞 )
13 1 2 5 3 6 7 8 9 4 10 11 12 dihord6apre ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑌𝐵𝑌 𝑊 ) ) ∧ ( 𝐼𝑋 ) ⊆ ( 𝐼𝑌 ) ) → 𝑋 𝑌 )