| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dihord5apre.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
| 2 |
|
dihord5apre.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
| 3 |
|
dihord5apre.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 4 |
|
dihord5apre.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
| 5 |
|
dihord5apre.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
| 6 |
|
dihord5apre.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
| 7 |
|
dihord5apre.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
| 8 |
|
dihord5apre.s |
⊢ ⊕ = ( LSSum ‘ 𝑈 ) |
| 9 |
|
dihord5apre.i |
⊢ 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) |
| 10 |
|
simpl1 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊 ) ) ∧ ( 𝐼 ‘ 𝑋 ) ⊆ ( 𝐼 ‘ 𝑌 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 11 |
|
simpl3 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊 ) ) ∧ ( 𝐼 ‘ 𝑋 ) ⊆ ( 𝐼 ‘ 𝑌 ) ) → ( 𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊 ) ) |
| 12 |
1 2 4 5 6 3
|
lhpmcvr2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊 ) ) → ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑟 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ) ) |
| 13 |
10 11 12
|
syl2anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊 ) ) ∧ ( 𝐼 ‘ 𝑋 ) ⊆ ( 𝐼 ‘ 𝑌 ) ) → ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑟 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ) ) |
| 14 |
|
simp11l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊 ) ) ∧ ( 𝐼 ‘ 𝑋 ) ⊆ ( 𝐼 ‘ 𝑌 ) ∧ ( ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ( 𝑟 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ) ) → 𝐾 ∈ HL ) |
| 15 |
14
|
hllatd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊 ) ) ∧ ( 𝐼 ‘ 𝑋 ) ⊆ ( 𝐼 ‘ 𝑌 ) ∧ ( ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ( 𝑟 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ) ) → 𝐾 ∈ Lat ) |
| 16 |
|
simp12l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊 ) ) ∧ ( 𝐼 ‘ 𝑋 ) ⊆ ( 𝐼 ‘ 𝑌 ) ∧ ( ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ( 𝑟 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ) ) → 𝑋 ∈ 𝐵 ) |
| 17 |
|
simp3ll |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊 ) ) ∧ ( 𝐼 ‘ 𝑋 ) ⊆ ( 𝐼 ‘ 𝑌 ) ∧ ( ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ( 𝑟 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ) ) → 𝑟 ∈ 𝐴 ) |
| 18 |
1 6
|
atbase |
⊢ ( 𝑟 ∈ 𝐴 → 𝑟 ∈ 𝐵 ) |
| 19 |
17 18
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊 ) ) ∧ ( 𝐼 ‘ 𝑋 ) ⊆ ( 𝐼 ‘ 𝑌 ) ∧ ( ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ( 𝑟 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ) ) → 𝑟 ∈ 𝐵 ) |
| 20 |
1 4
|
latjcl |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑟 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑟 ∨ 𝑋 ) ∈ 𝐵 ) |
| 21 |
15 19 16 20
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊 ) ) ∧ ( 𝐼 ‘ 𝑋 ) ⊆ ( 𝐼 ‘ 𝑌 ) ∧ ( ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ( 𝑟 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ) ) → ( 𝑟 ∨ 𝑋 ) ∈ 𝐵 ) |
| 22 |
|
simp13l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊 ) ) ∧ ( 𝐼 ‘ 𝑋 ) ⊆ ( 𝐼 ‘ 𝑌 ) ∧ ( ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ( 𝑟 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ) ) → 𝑌 ∈ 𝐵 ) |
| 23 |
1 2 4
|
latlej2 |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑟 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ≤ ( 𝑟 ∨ 𝑋 ) ) |
| 24 |
15 19 16 23
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊 ) ) ∧ ( 𝐼 ‘ 𝑋 ) ⊆ ( 𝐼 ‘ 𝑌 ) ∧ ( ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ( 𝑟 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ) ) → 𝑋 ≤ ( 𝑟 ∨ 𝑋 ) ) |
| 25 |
|
simp11 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊 ) ) ∧ ( 𝐼 ‘ 𝑋 ) ⊆ ( 𝐼 ‘ 𝑌 ) ∧ ( ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ( 𝑟 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 26 |
|
simp3lr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊 ) ) ∧ ( 𝐼 ‘ 𝑋 ) ⊆ ( 𝐼 ‘ 𝑌 ) ∧ ( ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ( 𝑟 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ) ) → ¬ 𝑟 ≤ 𝑊 ) |
| 27 |
1 2 4
|
latlej1 |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑟 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → 𝑟 ≤ ( 𝑟 ∨ 𝑋 ) ) |
| 28 |
15 19 16 27
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊 ) ) ∧ ( 𝐼 ‘ 𝑋 ) ⊆ ( 𝐼 ‘ 𝑌 ) ∧ ( ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ( 𝑟 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ) ) → 𝑟 ≤ ( 𝑟 ∨ 𝑋 ) ) |
| 29 |
|
simp11r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊 ) ) ∧ ( 𝐼 ‘ 𝑋 ) ⊆ ( 𝐼 ‘ 𝑌 ) ∧ ( ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ( 𝑟 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ) ) → 𝑊 ∈ 𝐻 ) |
| 30 |
1 3
|
lhpbase |
⊢ ( 𝑊 ∈ 𝐻 → 𝑊 ∈ 𝐵 ) |
| 31 |
29 30
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊 ) ) ∧ ( 𝐼 ‘ 𝑋 ) ⊆ ( 𝐼 ‘ 𝑌 ) ∧ ( ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ( 𝑟 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ) ) → 𝑊 ∈ 𝐵 ) |
| 32 |
1 2
|
lattr |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑟 ∈ 𝐵 ∧ ( 𝑟 ∨ 𝑋 ) ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ) → ( ( 𝑟 ≤ ( 𝑟 ∨ 𝑋 ) ∧ ( 𝑟 ∨ 𝑋 ) ≤ 𝑊 ) → 𝑟 ≤ 𝑊 ) ) |
| 33 |
15 19 21 31 32
|
syl13anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊 ) ) ∧ ( 𝐼 ‘ 𝑋 ) ⊆ ( 𝐼 ‘ 𝑌 ) ∧ ( ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ( 𝑟 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ) ) → ( ( 𝑟 ≤ ( 𝑟 ∨ 𝑋 ) ∧ ( 𝑟 ∨ 𝑋 ) ≤ 𝑊 ) → 𝑟 ≤ 𝑊 ) ) |
| 34 |
28 33
|
mpand |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊 ) ) ∧ ( 𝐼 ‘ 𝑋 ) ⊆ ( 𝐼 ‘ 𝑌 ) ∧ ( ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ( 𝑟 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ) ) → ( ( 𝑟 ∨ 𝑋 ) ≤ 𝑊 → 𝑟 ≤ 𝑊 ) ) |
| 35 |
26 34
|
mtod |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊 ) ) ∧ ( 𝐼 ‘ 𝑋 ) ⊆ ( 𝐼 ‘ 𝑌 ) ∧ ( ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ( 𝑟 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ) ) → ¬ ( 𝑟 ∨ 𝑋 ) ≤ 𝑊 ) |
| 36 |
|
simp3l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊 ) ) ∧ ( 𝐼 ‘ 𝑋 ) ⊆ ( 𝐼 ‘ 𝑌 ) ∧ ( ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ( 𝑟 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ) ) → ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ) |
| 37 |
|
simp12 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊 ) ) ∧ ( 𝐼 ‘ 𝑋 ) ⊆ ( 𝐼 ‘ 𝑌 ) ∧ ( ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ( 𝑟 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ) ) → ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) |
| 38 |
1 2 4 5 6 3
|
lhple |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) → ( ( 𝑟 ∨ 𝑋 ) ∧ 𝑊 ) = 𝑋 ) |
| 39 |
25 36 37 38
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊 ) ) ∧ ( 𝐼 ‘ 𝑋 ) ⊆ ( 𝐼 ‘ 𝑌 ) ∧ ( ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ( 𝑟 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ) ) → ( ( 𝑟 ∨ 𝑋 ) ∧ 𝑊 ) = 𝑋 ) |
| 40 |
39
|
oveq2d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊 ) ) ∧ ( 𝐼 ‘ 𝑋 ) ⊆ ( 𝐼 ‘ 𝑌 ) ∧ ( ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ( 𝑟 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ) ) → ( 𝑟 ∨ ( ( 𝑟 ∨ 𝑋 ) ∧ 𝑊 ) ) = ( 𝑟 ∨ 𝑋 ) ) |
| 41 |
|
eqid |
⊢ ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) |
| 42 |
|
eqid |
⊢ ( ( DIsoC ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DIsoC ‘ 𝐾 ) ‘ 𝑊 ) |
| 43 |
1 2 4 5 6 3 9 41 42 7 8
|
dihvalcq |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑟 ∨ 𝑋 ) ∈ 𝐵 ∧ ¬ ( 𝑟 ∨ 𝑋 ) ≤ 𝑊 ) ∧ ( ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ( 𝑟 ∨ ( ( 𝑟 ∨ 𝑋 ) ∧ 𝑊 ) ) = ( 𝑟 ∨ 𝑋 ) ) ) → ( 𝐼 ‘ ( 𝑟 ∨ 𝑋 ) ) = ( ( ( ( DIsoC ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑟 ) ⊕ ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( 𝑟 ∨ 𝑋 ) ∧ 𝑊 ) ) ) ) |
| 44 |
25 21 35 36 40 43
|
syl122anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊 ) ) ∧ ( 𝐼 ‘ 𝑋 ) ⊆ ( 𝐼 ‘ 𝑌 ) ∧ ( ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ( 𝑟 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ) ) → ( 𝐼 ‘ ( 𝑟 ∨ 𝑋 ) ) = ( ( ( ( DIsoC ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑟 ) ⊕ ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( 𝑟 ∨ 𝑋 ) ∧ 𝑊 ) ) ) ) |
| 45 |
3 7 25
|
dvhlmod |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊 ) ) ∧ ( 𝐼 ‘ 𝑋 ) ⊆ ( 𝐼 ‘ 𝑌 ) ∧ ( ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ( 𝑟 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ) ) → 𝑈 ∈ LMod ) |
| 46 |
|
eqid |
⊢ ( LSubSp ‘ 𝑈 ) = ( LSubSp ‘ 𝑈 ) |
| 47 |
46
|
lsssssubg |
⊢ ( 𝑈 ∈ LMod → ( LSubSp ‘ 𝑈 ) ⊆ ( SubGrp ‘ 𝑈 ) ) |
| 48 |
45 47
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊 ) ) ∧ ( 𝐼 ‘ 𝑋 ) ⊆ ( 𝐼 ‘ 𝑌 ) ∧ ( ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ( 𝑟 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ) ) → ( LSubSp ‘ 𝑈 ) ⊆ ( SubGrp ‘ 𝑈 ) ) |
| 49 |
2 6 3 7 42 46
|
diclss |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ) → ( ( ( DIsoC ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑟 ) ∈ ( LSubSp ‘ 𝑈 ) ) |
| 50 |
25 36 49
|
syl2anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊 ) ) ∧ ( 𝐼 ‘ 𝑋 ) ⊆ ( 𝐼 ‘ 𝑌 ) ∧ ( ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ( 𝑟 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ) ) → ( ( ( DIsoC ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑟 ) ∈ ( LSubSp ‘ 𝑈 ) ) |
| 51 |
48 50
|
sseldd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊 ) ) ∧ ( 𝐼 ‘ 𝑋 ) ⊆ ( 𝐼 ‘ 𝑌 ) ∧ ( ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ( 𝑟 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ) ) → ( ( ( DIsoC ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑟 ) ∈ ( SubGrp ‘ 𝑈 ) ) |
| 52 |
1 5
|
latmcl |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑌 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) → ( 𝑌 ∧ 𝑊 ) ∈ 𝐵 ) |
| 53 |
15 22 31 52
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊 ) ) ∧ ( 𝐼 ‘ 𝑋 ) ⊆ ( 𝐼 ‘ 𝑌 ) ∧ ( ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ( 𝑟 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ) ) → ( 𝑌 ∧ 𝑊 ) ∈ 𝐵 ) |
| 54 |
1 2 5
|
latmle2 |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑌 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) → ( 𝑌 ∧ 𝑊 ) ≤ 𝑊 ) |
| 55 |
15 22 31 54
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊 ) ) ∧ ( 𝐼 ‘ 𝑋 ) ⊆ ( 𝐼 ‘ 𝑌 ) ∧ ( ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ( 𝑟 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ) ) → ( 𝑌 ∧ 𝑊 ) ≤ 𝑊 ) |
| 56 |
1 2 3 7 41 46
|
diblss |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑌 ∧ 𝑊 ) ∈ 𝐵 ∧ ( 𝑌 ∧ 𝑊 ) ≤ 𝑊 ) ) → ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑌 ∧ 𝑊 ) ) ∈ ( LSubSp ‘ 𝑈 ) ) |
| 57 |
25 53 55 56
|
syl12anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊 ) ) ∧ ( 𝐼 ‘ 𝑋 ) ⊆ ( 𝐼 ‘ 𝑌 ) ∧ ( ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ( 𝑟 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ) ) → ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑌 ∧ 𝑊 ) ) ∈ ( LSubSp ‘ 𝑈 ) ) |
| 58 |
48 57
|
sseldd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊 ) ) ∧ ( 𝐼 ‘ 𝑋 ) ⊆ ( 𝐼 ‘ 𝑌 ) ∧ ( ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ( 𝑟 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ) ) → ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑌 ∧ 𝑊 ) ) ∈ ( SubGrp ‘ 𝑈 ) ) |
| 59 |
8
|
lsmub1 |
⊢ ( ( ( ( ( DIsoC ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑟 ) ∈ ( SubGrp ‘ 𝑈 ) ∧ ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑌 ∧ 𝑊 ) ) ∈ ( SubGrp ‘ 𝑈 ) ) → ( ( ( DIsoC ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑟 ) ⊆ ( ( ( ( DIsoC ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑟 ) ⊕ ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑌 ∧ 𝑊 ) ) ) ) |
| 60 |
51 58 59
|
syl2anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊 ) ) ∧ ( 𝐼 ‘ 𝑋 ) ⊆ ( 𝐼 ‘ 𝑌 ) ∧ ( ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ( 𝑟 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ) ) → ( ( ( DIsoC ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑟 ) ⊆ ( ( ( ( DIsoC ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑟 ) ⊕ ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑌 ∧ 𝑊 ) ) ) ) |
| 61 |
|
simp13 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊 ) ) ∧ ( 𝐼 ‘ 𝑋 ) ⊆ ( 𝐼 ‘ 𝑌 ) ∧ ( ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ( 𝑟 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ) ) → ( 𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊 ) ) |
| 62 |
|
simp3r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊 ) ) ∧ ( 𝐼 ‘ 𝑋 ) ⊆ ( 𝐼 ‘ 𝑌 ) ∧ ( ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ( 𝑟 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ) ) → ( 𝑟 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ) |
| 63 |
1 2 4 5 6 3 9 41 42 7 8
|
dihvalcq |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊 ) ∧ ( ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ( 𝑟 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ) ) → ( 𝐼 ‘ 𝑌 ) = ( ( ( ( DIsoC ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑟 ) ⊕ ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑌 ∧ 𝑊 ) ) ) ) |
| 64 |
25 61 36 62 63
|
syl112anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊 ) ) ∧ ( 𝐼 ‘ 𝑋 ) ⊆ ( 𝐼 ‘ 𝑌 ) ∧ ( ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ( 𝑟 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ) ) → ( 𝐼 ‘ 𝑌 ) = ( ( ( ( DIsoC ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑟 ) ⊕ ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑌 ∧ 𝑊 ) ) ) ) |
| 65 |
60 64
|
sseqtrrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊 ) ) ∧ ( 𝐼 ‘ 𝑋 ) ⊆ ( 𝐼 ‘ 𝑌 ) ∧ ( ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ( 𝑟 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ) ) → ( ( ( DIsoC ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑟 ) ⊆ ( 𝐼 ‘ 𝑌 ) ) |
| 66 |
39
|
fveq2d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊 ) ) ∧ ( 𝐼 ‘ 𝑋 ) ⊆ ( 𝐼 ‘ 𝑌 ) ∧ ( ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ( 𝑟 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ) ) → ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( 𝑟 ∨ 𝑋 ) ∧ 𝑊 ) ) = ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑋 ) ) |
| 67 |
1 2 3 9 41
|
dihvalb |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) → ( 𝐼 ‘ 𝑋 ) = ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑋 ) ) |
| 68 |
25 37 67
|
syl2anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊 ) ) ∧ ( 𝐼 ‘ 𝑋 ) ⊆ ( 𝐼 ‘ 𝑌 ) ∧ ( ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ( 𝑟 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ) ) → ( 𝐼 ‘ 𝑋 ) = ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑋 ) ) |
| 69 |
66 68
|
eqtr4d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊 ) ) ∧ ( 𝐼 ‘ 𝑋 ) ⊆ ( 𝐼 ‘ 𝑌 ) ∧ ( ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ( 𝑟 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ) ) → ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( 𝑟 ∨ 𝑋 ) ∧ 𝑊 ) ) = ( 𝐼 ‘ 𝑋 ) ) |
| 70 |
|
simp2 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊 ) ) ∧ ( 𝐼 ‘ 𝑋 ) ⊆ ( 𝐼 ‘ 𝑌 ) ∧ ( ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ( 𝑟 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ) ) → ( 𝐼 ‘ 𝑋 ) ⊆ ( 𝐼 ‘ 𝑌 ) ) |
| 71 |
69 70
|
eqsstrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊 ) ) ∧ ( 𝐼 ‘ 𝑋 ) ⊆ ( 𝐼 ‘ 𝑌 ) ∧ ( ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ( 𝑟 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ) ) → ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( 𝑟 ∨ 𝑋 ) ∧ 𝑊 ) ) ⊆ ( 𝐼 ‘ 𝑌 ) ) |
| 72 |
1 5
|
latmcl |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑟 ∨ 𝑋 ) ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) → ( ( 𝑟 ∨ 𝑋 ) ∧ 𝑊 ) ∈ 𝐵 ) |
| 73 |
15 21 31 72
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊 ) ) ∧ ( 𝐼 ‘ 𝑋 ) ⊆ ( 𝐼 ‘ 𝑌 ) ∧ ( ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ( 𝑟 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ) ) → ( ( 𝑟 ∨ 𝑋 ) ∧ 𝑊 ) ∈ 𝐵 ) |
| 74 |
1 2 5
|
latmle2 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑟 ∨ 𝑋 ) ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) → ( ( 𝑟 ∨ 𝑋 ) ∧ 𝑊 ) ≤ 𝑊 ) |
| 75 |
15 21 31 74
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊 ) ) ∧ ( 𝐼 ‘ 𝑋 ) ⊆ ( 𝐼 ‘ 𝑌 ) ∧ ( ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ( 𝑟 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ) ) → ( ( 𝑟 ∨ 𝑋 ) ∧ 𝑊 ) ≤ 𝑊 ) |
| 76 |
1 2 3 7 41 46
|
diblss |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( ( 𝑟 ∨ 𝑋 ) ∧ 𝑊 ) ∈ 𝐵 ∧ ( ( 𝑟 ∨ 𝑋 ) ∧ 𝑊 ) ≤ 𝑊 ) ) → ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( 𝑟 ∨ 𝑋 ) ∧ 𝑊 ) ) ∈ ( LSubSp ‘ 𝑈 ) ) |
| 77 |
25 73 75 76
|
syl12anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊 ) ) ∧ ( 𝐼 ‘ 𝑋 ) ⊆ ( 𝐼 ‘ 𝑌 ) ∧ ( ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ( 𝑟 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ) ) → ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( 𝑟 ∨ 𝑋 ) ∧ 𝑊 ) ) ∈ ( LSubSp ‘ 𝑈 ) ) |
| 78 |
48 77
|
sseldd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊 ) ) ∧ ( 𝐼 ‘ 𝑋 ) ⊆ ( 𝐼 ‘ 𝑌 ) ∧ ( ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ( 𝑟 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ) ) → ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( 𝑟 ∨ 𝑋 ) ∧ 𝑊 ) ) ∈ ( SubGrp ‘ 𝑈 ) ) |
| 79 |
1 3 9 7 46
|
dihlss |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑌 ∈ 𝐵 ) → ( 𝐼 ‘ 𝑌 ) ∈ ( LSubSp ‘ 𝑈 ) ) |
| 80 |
25 22 79
|
syl2anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊 ) ) ∧ ( 𝐼 ‘ 𝑋 ) ⊆ ( 𝐼 ‘ 𝑌 ) ∧ ( ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ( 𝑟 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ) ) → ( 𝐼 ‘ 𝑌 ) ∈ ( LSubSp ‘ 𝑈 ) ) |
| 81 |
48 80
|
sseldd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊 ) ) ∧ ( 𝐼 ‘ 𝑋 ) ⊆ ( 𝐼 ‘ 𝑌 ) ∧ ( ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ( 𝑟 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ) ) → ( 𝐼 ‘ 𝑌 ) ∈ ( SubGrp ‘ 𝑈 ) ) |
| 82 |
8
|
lsmlub |
⊢ ( ( ( ( ( DIsoC ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑟 ) ∈ ( SubGrp ‘ 𝑈 ) ∧ ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( 𝑟 ∨ 𝑋 ) ∧ 𝑊 ) ) ∈ ( SubGrp ‘ 𝑈 ) ∧ ( 𝐼 ‘ 𝑌 ) ∈ ( SubGrp ‘ 𝑈 ) ) → ( ( ( ( ( DIsoC ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑟 ) ⊆ ( 𝐼 ‘ 𝑌 ) ∧ ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( 𝑟 ∨ 𝑋 ) ∧ 𝑊 ) ) ⊆ ( 𝐼 ‘ 𝑌 ) ) ↔ ( ( ( ( DIsoC ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑟 ) ⊕ ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( 𝑟 ∨ 𝑋 ) ∧ 𝑊 ) ) ) ⊆ ( 𝐼 ‘ 𝑌 ) ) ) |
| 83 |
51 78 81 82
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊 ) ) ∧ ( 𝐼 ‘ 𝑋 ) ⊆ ( 𝐼 ‘ 𝑌 ) ∧ ( ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ( 𝑟 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ) ) → ( ( ( ( ( DIsoC ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑟 ) ⊆ ( 𝐼 ‘ 𝑌 ) ∧ ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( 𝑟 ∨ 𝑋 ) ∧ 𝑊 ) ) ⊆ ( 𝐼 ‘ 𝑌 ) ) ↔ ( ( ( ( DIsoC ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑟 ) ⊕ ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( 𝑟 ∨ 𝑋 ) ∧ 𝑊 ) ) ) ⊆ ( 𝐼 ‘ 𝑌 ) ) ) |
| 84 |
65 71 83
|
mpbi2and |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊 ) ) ∧ ( 𝐼 ‘ 𝑋 ) ⊆ ( 𝐼 ‘ 𝑌 ) ∧ ( ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ( 𝑟 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ) ) → ( ( ( ( DIsoC ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑟 ) ⊕ ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( 𝑟 ∨ 𝑋 ) ∧ 𝑊 ) ) ) ⊆ ( 𝐼 ‘ 𝑌 ) ) |
| 85 |
44 84
|
eqsstrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊 ) ) ∧ ( 𝐼 ‘ 𝑋 ) ⊆ ( 𝐼 ‘ 𝑌 ) ∧ ( ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ( 𝑟 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ) ) → ( 𝐼 ‘ ( 𝑟 ∨ 𝑋 ) ) ⊆ ( 𝐼 ‘ 𝑌 ) ) |
| 86 |
1 2 3 9
|
dihord4 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑟 ∨ 𝑋 ) ∈ 𝐵 ∧ ¬ ( 𝑟 ∨ 𝑋 ) ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊 ) ) → ( ( 𝐼 ‘ ( 𝑟 ∨ 𝑋 ) ) ⊆ ( 𝐼 ‘ 𝑌 ) ↔ ( 𝑟 ∨ 𝑋 ) ≤ 𝑌 ) ) |
| 87 |
25 21 35 61 86
|
syl121anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊 ) ) ∧ ( 𝐼 ‘ 𝑋 ) ⊆ ( 𝐼 ‘ 𝑌 ) ∧ ( ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ( 𝑟 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ) ) → ( ( 𝐼 ‘ ( 𝑟 ∨ 𝑋 ) ) ⊆ ( 𝐼 ‘ 𝑌 ) ↔ ( 𝑟 ∨ 𝑋 ) ≤ 𝑌 ) ) |
| 88 |
85 87
|
mpbid |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊 ) ) ∧ ( 𝐼 ‘ 𝑋 ) ⊆ ( 𝐼 ‘ 𝑌 ) ∧ ( ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ( 𝑟 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ) ) → ( 𝑟 ∨ 𝑋 ) ≤ 𝑌 ) |
| 89 |
1 2 15 16 21 22 24 88
|
lattrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊 ) ) ∧ ( 𝐼 ‘ 𝑋 ) ⊆ ( 𝐼 ‘ 𝑌 ) ∧ ( ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ( 𝑟 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ) ) → 𝑋 ≤ 𝑌 ) |
| 90 |
89
|
3expia |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊 ) ) ∧ ( 𝐼 ‘ 𝑋 ) ⊆ ( 𝐼 ‘ 𝑌 ) ) → ( ( ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ( 𝑟 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ) → 𝑋 ≤ 𝑌 ) ) |
| 91 |
90
|
exp4c |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊 ) ) ∧ ( 𝐼 ‘ 𝑋 ) ⊆ ( 𝐼 ‘ 𝑌 ) ) → ( 𝑟 ∈ 𝐴 → ( ¬ 𝑟 ≤ 𝑊 → ( ( 𝑟 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 → 𝑋 ≤ 𝑌 ) ) ) ) |
| 92 |
91
|
imp4a |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊 ) ) ∧ ( 𝐼 ‘ 𝑋 ) ⊆ ( 𝐼 ‘ 𝑌 ) ) → ( 𝑟 ∈ 𝐴 → ( ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑟 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ) → 𝑋 ≤ 𝑌 ) ) ) |
| 93 |
92
|
rexlimdv |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊 ) ) ∧ ( 𝐼 ‘ 𝑋 ) ⊆ ( 𝐼 ‘ 𝑌 ) ) → ( ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑟 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ) → 𝑋 ≤ 𝑌 ) ) |
| 94 |
13 93
|
mpd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊 ) ) ∧ ( 𝐼 ‘ 𝑋 ) ⊆ ( 𝐼 ‘ 𝑌 ) ) → 𝑋 ≤ 𝑌 ) |