Step |
Hyp |
Ref |
Expression |
1 |
|
dihord5apre.b |
|
2 |
|
dihord5apre.l |
|
3 |
|
dihord5apre.h |
|
4 |
|
dihord5apre.j |
|
5 |
|
dihord5apre.m |
|
6 |
|
dihord5apre.a |
|
7 |
|
dihord5apre.u |
|
8 |
|
dihord5apre.s |
|
9 |
|
dihord5apre.i |
|
10 |
|
simpl1 |
|
11 |
|
simpl3 |
|
12 |
1 2 4 5 6 3
|
lhpmcvr2 |
|
13 |
10 11 12
|
syl2anc |
|
14 |
|
simp11l |
|
15 |
14
|
hllatd |
|
16 |
|
simp12l |
|
17 |
|
simp3ll |
|
18 |
1 6
|
atbase |
|
19 |
17 18
|
syl |
|
20 |
1 4
|
latjcl |
|
21 |
15 19 16 20
|
syl3anc |
|
22 |
|
simp13l |
|
23 |
1 2 4
|
latlej2 |
|
24 |
15 19 16 23
|
syl3anc |
|
25 |
|
simp11 |
|
26 |
|
simp3lr |
|
27 |
1 2 4
|
latlej1 |
|
28 |
15 19 16 27
|
syl3anc |
|
29 |
|
simp11r |
|
30 |
1 3
|
lhpbase |
|
31 |
29 30
|
syl |
|
32 |
1 2
|
lattr |
|
33 |
15 19 21 31 32
|
syl13anc |
|
34 |
28 33
|
mpand |
|
35 |
26 34
|
mtod |
|
36 |
|
simp3l |
|
37 |
|
simp12 |
|
38 |
1 2 4 5 6 3
|
lhple |
|
39 |
25 36 37 38
|
syl3anc |
|
40 |
39
|
oveq2d |
|
41 |
|
eqid |
|
42 |
|
eqid |
|
43 |
1 2 4 5 6 3 9 41 42 7 8
|
dihvalcq |
|
44 |
25 21 35 36 40 43
|
syl122anc |
|
45 |
3 7 25
|
dvhlmod |
|
46 |
|
eqid |
|
47 |
46
|
lsssssubg |
|
48 |
45 47
|
syl |
|
49 |
2 6 3 7 42 46
|
diclss |
|
50 |
25 36 49
|
syl2anc |
|
51 |
48 50
|
sseldd |
|
52 |
1 5
|
latmcl |
|
53 |
15 22 31 52
|
syl3anc |
|
54 |
1 2 5
|
latmle2 |
|
55 |
15 22 31 54
|
syl3anc |
|
56 |
1 2 3 7 41 46
|
diblss |
|
57 |
25 53 55 56
|
syl12anc |
|
58 |
48 57
|
sseldd |
|
59 |
8
|
lsmub1 |
|
60 |
51 58 59
|
syl2anc |
|
61 |
|
simp13 |
|
62 |
|
simp3r |
|
63 |
1 2 4 5 6 3 9 41 42 7 8
|
dihvalcq |
|
64 |
25 61 36 62 63
|
syl112anc |
|
65 |
60 64
|
sseqtrrd |
|
66 |
39
|
fveq2d |
|
67 |
1 2 3 9 41
|
dihvalb |
|
68 |
25 37 67
|
syl2anc |
|
69 |
66 68
|
eqtr4d |
|
70 |
|
simp2 |
|
71 |
69 70
|
eqsstrd |
|
72 |
1 5
|
latmcl |
|
73 |
15 21 31 72
|
syl3anc |
|
74 |
1 2 5
|
latmle2 |
|
75 |
15 21 31 74
|
syl3anc |
|
76 |
1 2 3 7 41 46
|
diblss |
|
77 |
25 73 75 76
|
syl12anc |
|
78 |
48 77
|
sseldd |
|
79 |
1 3 9 7 46
|
dihlss |
|
80 |
25 22 79
|
syl2anc |
|
81 |
48 80
|
sseldd |
|
82 |
8
|
lsmlub |
|
83 |
51 78 81 82
|
syl3anc |
|
84 |
65 71 83
|
mpbi2and |
|
85 |
44 84
|
eqsstrd |
|
86 |
1 2 3 9
|
dihord4 |
|
87 |
25 21 35 61 86
|
syl121anc |
|
88 |
85 87
|
mpbid |
|
89 |
1 2 15 16 21 22 24 88
|
lattrd |
|
90 |
89
|
3expia |
|
91 |
90
|
exp4c |
|
92 |
91
|
imp4a |
|
93 |
92
|
rexlimdv |
|
94 |
13 93
|
mpd |
|