| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dihord3.b |
|
| 2 |
|
dihord3.l |
|
| 3 |
|
dihord3.h |
|
| 4 |
|
dihord3.i |
|
| 5 |
|
eqid |
|
| 6 |
|
eqid |
|
| 7 |
|
eqid |
|
| 8 |
1 2 5 6 7 3
|
lhpmcvr2 |
|
| 9 |
8
|
3adant3 |
|
| 10 |
1 2 5 6 7 3
|
lhpmcvr2 |
|
| 11 |
10
|
3adant2 |
|
| 12 |
|
reeanv |
|
| 13 |
9 11 12
|
sylanbrc |
|
| 14 |
|
simp11 |
|
| 15 |
|
simp12 |
|
| 16 |
|
simp2l |
|
| 17 |
|
simp3ll |
|
| 18 |
16 17
|
jca |
|
| 19 |
|
simp3lr |
|
| 20 |
|
eqid |
|
| 21 |
|
eqid |
|
| 22 |
|
eqid |
|
| 23 |
|
eqid |
|
| 24 |
1 2 5 6 7 3 4 20 21 22 23
|
dihvalcq |
|
| 25 |
14 15 18 19 24
|
syl112anc |
|
| 26 |
|
simp13 |
|
| 27 |
|
simp2r |
|
| 28 |
|
simp3rl |
|
| 29 |
27 28
|
jca |
|
| 30 |
|
simp3rr |
|
| 31 |
1 2 5 6 7 3 4 20 21 22 23
|
dihvalcq |
|
| 32 |
14 26 29 30 31
|
syl112anc |
|
| 33 |
25 32
|
sseq12d |
|
| 34 |
|
simpl11 |
|
| 35 |
|
simpl2l |
|
| 36 |
17
|
adantr |
|
| 37 |
35 36
|
jca |
|
| 38 |
|
simpl2r |
|
| 39 |
28
|
adantr |
|
| 40 |
38 39
|
jca |
|
| 41 |
|
simp12l |
|
| 42 |
41
|
adantr |
|
| 43 |
|
simp13l |
|
| 44 |
43
|
adantr |
|
| 45 |
19
|
adantr |
|
| 46 |
30
|
adantr |
|
| 47 |
|
simpr |
|
| 48 |
1 2 5 6 7 3 20 21 22 23
|
dihord2 |
|
| 49 |
34 37 40 42 44 45 46 47 48
|
syl323anc |
|
| 50 |
|
simpl11 |
|
| 51 |
|
simpl2l |
|
| 52 |
17
|
adantr |
|
| 53 |
51 52
|
jca |
|
| 54 |
|
simpl2r |
|
| 55 |
28
|
adantr |
|
| 56 |
54 55
|
jca |
|
| 57 |
41
|
adantr |
|
| 58 |
43
|
adantr |
|
| 59 |
19
|
adantr |
|
| 60 |
30
|
adantr |
|
| 61 |
|
simpr |
|
| 62 |
1 2 5 6 7 3 20 21 22 23
|
dihord1 |
|
| 63 |
50 53 56 57 58 59 60 61 62
|
syl323anc |
|
| 64 |
49 63
|
impbida |
|
| 65 |
33 64
|
bitrd |
|
| 66 |
65
|
3exp |
|
| 67 |
66
|
rexlimdvv |
|
| 68 |
13 67
|
mpd |
|