Metamath Proof Explorer


Theorem dihord4

Description: The isomorphism H for a lattice K is order-preserving in the region not under co-atom W . TODO: reformat ( q e. A /\ -. q .<_ W ) to eliminate adant*. (Contributed by NM, 6-Mar-2014)

Ref Expression
Hypotheses dihord3.b B=BaseK
dihord3.l ˙=K
dihord3.h H=LHypK
dihord3.i I=DIsoHKW
Assertion dihord4 KHLWHXB¬X˙WYB¬Y˙WIXIYX˙Y

Proof

Step Hyp Ref Expression
1 dihord3.b B=BaseK
2 dihord3.l ˙=K
3 dihord3.h H=LHypK
4 dihord3.i I=DIsoHKW
5 eqid joinK=joinK
6 eqid meetK=meetK
7 eqid AtomsK=AtomsK
8 1 2 5 6 7 3 lhpmcvr2 KHLWHXB¬X˙WqAtomsK¬q˙WqjoinKXmeetKW=X
9 8 3adant3 KHLWHXB¬X˙WYB¬Y˙WqAtomsK¬q˙WqjoinKXmeetKW=X
10 1 2 5 6 7 3 lhpmcvr2 KHLWHYB¬Y˙WrAtomsK¬r˙WrjoinKYmeetKW=Y
11 10 3adant2 KHLWHXB¬X˙WYB¬Y˙WrAtomsK¬r˙WrjoinKYmeetKW=Y
12 reeanv qAtomsKrAtomsK¬q˙WqjoinKXmeetKW=X¬r˙WrjoinKYmeetKW=YqAtomsK¬q˙WqjoinKXmeetKW=XrAtomsK¬r˙WrjoinKYmeetKW=Y
13 9 11 12 sylanbrc KHLWHXB¬X˙WYB¬Y˙WqAtomsKrAtomsK¬q˙WqjoinKXmeetKW=X¬r˙WrjoinKYmeetKW=Y
14 simp11 KHLWHXB¬X˙WYB¬Y˙WqAtomsKrAtomsK¬q˙WqjoinKXmeetKW=X¬r˙WrjoinKYmeetKW=YKHLWH
15 simp12 KHLWHXB¬X˙WYB¬Y˙WqAtomsKrAtomsK¬q˙WqjoinKXmeetKW=X¬r˙WrjoinKYmeetKW=YXB¬X˙W
16 simp2l KHLWHXB¬X˙WYB¬Y˙WqAtomsKrAtomsK¬q˙WqjoinKXmeetKW=X¬r˙WrjoinKYmeetKW=YqAtomsK
17 simp3ll KHLWHXB¬X˙WYB¬Y˙WqAtomsKrAtomsK¬q˙WqjoinKXmeetKW=X¬r˙WrjoinKYmeetKW=Y¬q˙W
18 16 17 jca KHLWHXB¬X˙WYB¬Y˙WqAtomsKrAtomsK¬q˙WqjoinKXmeetKW=X¬r˙WrjoinKYmeetKW=YqAtomsK¬q˙W
19 simp3lr KHLWHXB¬X˙WYB¬Y˙WqAtomsKrAtomsK¬q˙WqjoinKXmeetKW=X¬r˙WrjoinKYmeetKW=YqjoinKXmeetKW=X
20 eqid DIsoBKW=DIsoBKW
21 eqid DIsoCKW=DIsoCKW
22 eqid DVecHKW=DVecHKW
23 eqid LSSumDVecHKW=LSSumDVecHKW
24 1 2 5 6 7 3 4 20 21 22 23 dihvalcq KHLWHXB¬X˙WqAtomsK¬q˙WqjoinKXmeetKW=XIX=DIsoCKWqLSSumDVecHKWDIsoBKWXmeetKW
25 14 15 18 19 24 syl112anc KHLWHXB¬X˙WYB¬Y˙WqAtomsKrAtomsK¬q˙WqjoinKXmeetKW=X¬r˙WrjoinKYmeetKW=YIX=DIsoCKWqLSSumDVecHKWDIsoBKWXmeetKW
26 simp13 KHLWHXB¬X˙WYB¬Y˙WqAtomsKrAtomsK¬q˙WqjoinKXmeetKW=X¬r˙WrjoinKYmeetKW=YYB¬Y˙W
27 simp2r KHLWHXB¬X˙WYB¬Y˙WqAtomsKrAtomsK¬q˙WqjoinKXmeetKW=X¬r˙WrjoinKYmeetKW=YrAtomsK
28 simp3rl KHLWHXB¬X˙WYB¬Y˙WqAtomsKrAtomsK¬q˙WqjoinKXmeetKW=X¬r˙WrjoinKYmeetKW=Y¬r˙W
29 27 28 jca KHLWHXB¬X˙WYB¬Y˙WqAtomsKrAtomsK¬q˙WqjoinKXmeetKW=X¬r˙WrjoinKYmeetKW=YrAtomsK¬r˙W
30 simp3rr KHLWHXB¬X˙WYB¬Y˙WqAtomsKrAtomsK¬q˙WqjoinKXmeetKW=X¬r˙WrjoinKYmeetKW=YrjoinKYmeetKW=Y
31 1 2 5 6 7 3 4 20 21 22 23 dihvalcq KHLWHYB¬Y˙WrAtomsK¬r˙WrjoinKYmeetKW=YIY=DIsoCKWrLSSumDVecHKWDIsoBKWYmeetKW
32 14 26 29 30 31 syl112anc KHLWHXB¬X˙WYB¬Y˙WqAtomsKrAtomsK¬q˙WqjoinKXmeetKW=X¬r˙WrjoinKYmeetKW=YIY=DIsoCKWrLSSumDVecHKWDIsoBKWYmeetKW
33 25 32 sseq12d KHLWHXB¬X˙WYB¬Y˙WqAtomsKrAtomsK¬q˙WqjoinKXmeetKW=X¬r˙WrjoinKYmeetKW=YIXIYDIsoCKWqLSSumDVecHKWDIsoBKWXmeetKWDIsoCKWrLSSumDVecHKWDIsoBKWYmeetKW
34 simpl11 KHLWHXB¬X˙WYB¬Y˙WqAtomsKrAtomsK¬q˙WqjoinKXmeetKW=X¬r˙WrjoinKYmeetKW=YDIsoCKWqLSSumDVecHKWDIsoBKWXmeetKWDIsoCKWrLSSumDVecHKWDIsoBKWYmeetKWKHLWH
35 simpl2l KHLWHXB¬X˙WYB¬Y˙WqAtomsKrAtomsK¬q˙WqjoinKXmeetKW=X¬r˙WrjoinKYmeetKW=YDIsoCKWqLSSumDVecHKWDIsoBKWXmeetKWDIsoCKWrLSSumDVecHKWDIsoBKWYmeetKWqAtomsK
36 17 adantr KHLWHXB¬X˙WYB¬Y˙WqAtomsKrAtomsK¬q˙WqjoinKXmeetKW=X¬r˙WrjoinKYmeetKW=YDIsoCKWqLSSumDVecHKWDIsoBKWXmeetKWDIsoCKWrLSSumDVecHKWDIsoBKWYmeetKW¬q˙W
37 35 36 jca KHLWHXB¬X˙WYB¬Y˙WqAtomsKrAtomsK¬q˙WqjoinKXmeetKW=X¬r˙WrjoinKYmeetKW=YDIsoCKWqLSSumDVecHKWDIsoBKWXmeetKWDIsoCKWrLSSumDVecHKWDIsoBKWYmeetKWqAtomsK¬q˙W
38 simpl2r KHLWHXB¬X˙WYB¬Y˙WqAtomsKrAtomsK¬q˙WqjoinKXmeetKW=X¬r˙WrjoinKYmeetKW=YDIsoCKWqLSSumDVecHKWDIsoBKWXmeetKWDIsoCKWrLSSumDVecHKWDIsoBKWYmeetKWrAtomsK
39 28 adantr KHLWHXB¬X˙WYB¬Y˙WqAtomsKrAtomsK¬q˙WqjoinKXmeetKW=X¬r˙WrjoinKYmeetKW=YDIsoCKWqLSSumDVecHKWDIsoBKWXmeetKWDIsoCKWrLSSumDVecHKWDIsoBKWYmeetKW¬r˙W
40 38 39 jca KHLWHXB¬X˙WYB¬Y˙WqAtomsKrAtomsK¬q˙WqjoinKXmeetKW=X¬r˙WrjoinKYmeetKW=YDIsoCKWqLSSumDVecHKWDIsoBKWXmeetKWDIsoCKWrLSSumDVecHKWDIsoBKWYmeetKWrAtomsK¬r˙W
41 simp12l KHLWHXB¬X˙WYB¬Y˙WqAtomsKrAtomsK¬q˙WqjoinKXmeetKW=X¬r˙WrjoinKYmeetKW=YXB
42 41 adantr KHLWHXB¬X˙WYB¬Y˙WqAtomsKrAtomsK¬q˙WqjoinKXmeetKW=X¬r˙WrjoinKYmeetKW=YDIsoCKWqLSSumDVecHKWDIsoBKWXmeetKWDIsoCKWrLSSumDVecHKWDIsoBKWYmeetKWXB
43 simp13l KHLWHXB¬X˙WYB¬Y˙WqAtomsKrAtomsK¬q˙WqjoinKXmeetKW=X¬r˙WrjoinKYmeetKW=YYB
44 43 adantr KHLWHXB¬X˙WYB¬Y˙WqAtomsKrAtomsK¬q˙WqjoinKXmeetKW=X¬r˙WrjoinKYmeetKW=YDIsoCKWqLSSumDVecHKWDIsoBKWXmeetKWDIsoCKWrLSSumDVecHKWDIsoBKWYmeetKWYB
45 19 adantr KHLWHXB¬X˙WYB¬Y˙WqAtomsKrAtomsK¬q˙WqjoinKXmeetKW=X¬r˙WrjoinKYmeetKW=YDIsoCKWqLSSumDVecHKWDIsoBKWXmeetKWDIsoCKWrLSSumDVecHKWDIsoBKWYmeetKWqjoinKXmeetKW=X
46 30 adantr KHLWHXB¬X˙WYB¬Y˙WqAtomsKrAtomsK¬q˙WqjoinKXmeetKW=X¬r˙WrjoinKYmeetKW=YDIsoCKWqLSSumDVecHKWDIsoBKWXmeetKWDIsoCKWrLSSumDVecHKWDIsoBKWYmeetKWrjoinKYmeetKW=Y
47 simpr KHLWHXB¬X˙WYB¬Y˙WqAtomsKrAtomsK¬q˙WqjoinKXmeetKW=X¬r˙WrjoinKYmeetKW=YDIsoCKWqLSSumDVecHKWDIsoBKWXmeetKWDIsoCKWrLSSumDVecHKWDIsoBKWYmeetKWDIsoCKWqLSSumDVecHKWDIsoBKWXmeetKWDIsoCKWrLSSumDVecHKWDIsoBKWYmeetKW
48 1 2 5 6 7 3 20 21 22 23 dihord2 KHLWHqAtomsK¬q˙WrAtomsK¬r˙WXBYBqjoinKXmeetKW=XrjoinKYmeetKW=YDIsoCKWqLSSumDVecHKWDIsoBKWXmeetKWDIsoCKWrLSSumDVecHKWDIsoBKWYmeetKWX˙Y
49 34 37 40 42 44 45 46 47 48 syl323anc KHLWHXB¬X˙WYB¬Y˙WqAtomsKrAtomsK¬q˙WqjoinKXmeetKW=X¬r˙WrjoinKYmeetKW=YDIsoCKWqLSSumDVecHKWDIsoBKWXmeetKWDIsoCKWrLSSumDVecHKWDIsoBKWYmeetKWX˙Y
50 simpl11 KHLWHXB¬X˙WYB¬Y˙WqAtomsKrAtomsK¬q˙WqjoinKXmeetKW=X¬r˙WrjoinKYmeetKW=YX˙YKHLWH
51 simpl2l KHLWHXB¬X˙WYB¬Y˙WqAtomsKrAtomsK¬q˙WqjoinKXmeetKW=X¬r˙WrjoinKYmeetKW=YX˙YqAtomsK
52 17 adantr KHLWHXB¬X˙WYB¬Y˙WqAtomsKrAtomsK¬q˙WqjoinKXmeetKW=X¬r˙WrjoinKYmeetKW=YX˙Y¬q˙W
53 51 52 jca KHLWHXB¬X˙WYB¬Y˙WqAtomsKrAtomsK¬q˙WqjoinKXmeetKW=X¬r˙WrjoinKYmeetKW=YX˙YqAtomsK¬q˙W
54 simpl2r KHLWHXB¬X˙WYB¬Y˙WqAtomsKrAtomsK¬q˙WqjoinKXmeetKW=X¬r˙WrjoinKYmeetKW=YX˙YrAtomsK
55 28 adantr KHLWHXB¬X˙WYB¬Y˙WqAtomsKrAtomsK¬q˙WqjoinKXmeetKW=X¬r˙WrjoinKYmeetKW=YX˙Y¬r˙W
56 54 55 jca KHLWHXB¬X˙WYB¬Y˙WqAtomsKrAtomsK¬q˙WqjoinKXmeetKW=X¬r˙WrjoinKYmeetKW=YX˙YrAtomsK¬r˙W
57 41 adantr KHLWHXB¬X˙WYB¬Y˙WqAtomsKrAtomsK¬q˙WqjoinKXmeetKW=X¬r˙WrjoinKYmeetKW=YX˙YXB
58 43 adantr KHLWHXB¬X˙WYB¬Y˙WqAtomsKrAtomsK¬q˙WqjoinKXmeetKW=X¬r˙WrjoinKYmeetKW=YX˙YYB
59 19 adantr KHLWHXB¬X˙WYB¬Y˙WqAtomsKrAtomsK¬q˙WqjoinKXmeetKW=X¬r˙WrjoinKYmeetKW=YX˙YqjoinKXmeetKW=X
60 30 adantr KHLWHXB¬X˙WYB¬Y˙WqAtomsKrAtomsK¬q˙WqjoinKXmeetKW=X¬r˙WrjoinKYmeetKW=YX˙YrjoinKYmeetKW=Y
61 simpr KHLWHXB¬X˙WYB¬Y˙WqAtomsKrAtomsK¬q˙WqjoinKXmeetKW=X¬r˙WrjoinKYmeetKW=YX˙YX˙Y
62 1 2 5 6 7 3 20 21 22 23 dihord1 KHLWHqAtomsK¬q˙WrAtomsK¬r˙WXBYBqjoinKXmeetKW=XrjoinKYmeetKW=YX˙YDIsoCKWqLSSumDVecHKWDIsoBKWXmeetKWDIsoCKWrLSSumDVecHKWDIsoBKWYmeetKW
63 50 53 56 57 58 59 60 61 62 syl323anc KHLWHXB¬X˙WYB¬Y˙WqAtomsKrAtomsK¬q˙WqjoinKXmeetKW=X¬r˙WrjoinKYmeetKW=YX˙YDIsoCKWqLSSumDVecHKWDIsoBKWXmeetKWDIsoCKWrLSSumDVecHKWDIsoBKWYmeetKW
64 49 63 impbida KHLWHXB¬X˙WYB¬Y˙WqAtomsKrAtomsK¬q˙WqjoinKXmeetKW=X¬r˙WrjoinKYmeetKW=YDIsoCKWqLSSumDVecHKWDIsoBKWXmeetKWDIsoCKWrLSSumDVecHKWDIsoBKWYmeetKWX˙Y
65 33 64 bitrd KHLWHXB¬X˙WYB¬Y˙WqAtomsKrAtomsK¬q˙WqjoinKXmeetKW=X¬r˙WrjoinKYmeetKW=YIXIYX˙Y
66 65 3exp KHLWHXB¬X˙WYB¬Y˙WqAtomsKrAtomsK¬q˙WqjoinKXmeetKW=X¬r˙WrjoinKYmeetKW=YIXIYX˙Y
67 66 rexlimdvv KHLWHXB¬X˙WYB¬Y˙WqAtomsKrAtomsK¬q˙WqjoinKXmeetKW=X¬r˙WrjoinKYmeetKW=YIXIYX˙Y
68 13 67 mpd KHLWHXB¬X˙WYB¬Y˙WIXIYX˙Y