Step |
Hyp |
Ref |
Expression |
1 |
|
dihord3.b |
|
2 |
|
dihord3.l |
|
3 |
|
dihord3.h |
|
4 |
|
dihord3.i |
|
5 |
|
eqid |
|
6 |
|
eqid |
|
7 |
|
eqid |
|
8 |
1 2 5 6 7 3
|
lhpmcvr2 |
|
9 |
8
|
3adant3 |
|
10 |
1 2 5 6 7 3
|
lhpmcvr2 |
|
11 |
10
|
3adant2 |
|
12 |
|
reeanv |
|
13 |
9 11 12
|
sylanbrc |
|
14 |
|
simp11 |
|
15 |
|
simp12 |
|
16 |
|
simp2l |
|
17 |
|
simp3ll |
|
18 |
16 17
|
jca |
|
19 |
|
simp3lr |
|
20 |
|
eqid |
|
21 |
|
eqid |
|
22 |
|
eqid |
|
23 |
|
eqid |
|
24 |
1 2 5 6 7 3 4 20 21 22 23
|
dihvalcq |
|
25 |
14 15 18 19 24
|
syl112anc |
|
26 |
|
simp13 |
|
27 |
|
simp2r |
|
28 |
|
simp3rl |
|
29 |
27 28
|
jca |
|
30 |
|
simp3rr |
|
31 |
1 2 5 6 7 3 4 20 21 22 23
|
dihvalcq |
|
32 |
14 26 29 30 31
|
syl112anc |
|
33 |
25 32
|
sseq12d |
|
34 |
|
simpl11 |
|
35 |
|
simpl2l |
|
36 |
17
|
adantr |
|
37 |
35 36
|
jca |
|
38 |
|
simpl2r |
|
39 |
28
|
adantr |
|
40 |
38 39
|
jca |
|
41 |
|
simp12l |
|
42 |
41
|
adantr |
|
43 |
|
simp13l |
|
44 |
43
|
adantr |
|
45 |
19
|
adantr |
|
46 |
30
|
adantr |
|
47 |
|
simpr |
|
48 |
1 2 5 6 7 3 20 21 22 23
|
dihord2 |
|
49 |
34 37 40 42 44 45 46 47 48
|
syl323anc |
|
50 |
|
simpl11 |
|
51 |
|
simpl2l |
|
52 |
17
|
adantr |
|
53 |
51 52
|
jca |
|
54 |
|
simpl2r |
|
55 |
28
|
adantr |
|
56 |
54 55
|
jca |
|
57 |
41
|
adantr |
|
58 |
43
|
adantr |
|
59 |
19
|
adantr |
|
60 |
30
|
adantr |
|
61 |
|
simpr |
|
62 |
1 2 5 6 7 3 20 21 22 23
|
dihord1 |
|
63 |
50 53 56 57 58 59 60 61 62
|
syl323anc |
|
64 |
49 63
|
impbida |
|
65 |
33 64
|
bitrd |
|
66 |
65
|
3exp |
|
67 |
66
|
rexlimdvv |
|
68 |
13 67
|
mpd |
|