Metamath Proof Explorer


Theorem dihord5a

Description: Part of proof that isomorphism H is order-preserving . (Contributed by NM, 7-Mar-2014)

Ref Expression
Hypotheses dihord.b B=BaseK
dihord.l ˙=K
dihord.h H=LHypK
dihord.i I=DIsoHKW
Assertion dihord5a KHLWHXBX˙WYB¬Y˙WIXIYX˙Y

Proof

Step Hyp Ref Expression
1 dihord.b B=BaseK
2 dihord.l ˙=K
3 dihord.h H=LHypK
4 dihord.i I=DIsoHKW
5 eqid joinK=joinK
6 eqid meetK=meetK
7 eqid AtomsK=AtomsK
8 eqid DVecHKW=DVecHKW
9 eqid LSSumDVecHKW=LSSumDVecHKW
10 1 2 3 5 6 7 8 9 4 dihord5apre KHLWHXBX˙WYB¬Y˙WIXIYX˙Y