Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Construction of a vector space from a Hilbert lattice
dihord5a
Next ⟩
dihord
Metamath Proof Explorer
Ascii
Unicode
Theorem
dihord5a
Description:
Part of proof that isomorphism H is order-preserving .
(Contributed by
NM
, 7-Mar-2014)
Ref
Expression
Hypotheses
dihord.b
⊢
B
=
Base
K
dihord.l
⊢
≤
˙
=
≤
K
dihord.h
⊢
H
=
LHyp
⁡
K
dihord.i
⊢
I
=
DIsoH
⁡
K
⁡
W
Assertion
dihord5a
⊢
K
∈
HL
∧
W
∈
H
∧
X
∈
B
∧
X
≤
˙
W
∧
Y
∈
B
∧
¬
Y
≤
˙
W
∧
I
⁡
X
⊆
I
⁡
Y
→
X
≤
˙
Y
Proof
Step
Hyp
Ref
Expression
1
dihord.b
⊢
B
=
Base
K
2
dihord.l
⊢
≤
˙
=
≤
K
3
dihord.h
⊢
H
=
LHyp
⁡
K
4
dihord.i
⊢
I
=
DIsoH
⁡
K
⁡
W
5
eqid
⊢
join
⁡
K
=
join
⁡
K
6
eqid
⊢
meet
⁡
K
=
meet
⁡
K
7
eqid
⊢
Atoms
⁡
K
=
Atoms
⁡
K
8
eqid
⊢
DVecH
⁡
K
⁡
W
=
DVecH
⁡
K
⁡
W
9
eqid
⊢
LSSum
⁡
DVecH
⁡
K
⁡
W
=
LSSum
⁡
DVecH
⁡
K
⁡
W
10
1
2
3
5
6
7
8
9
4
dihord5apre
⊢
K
∈
HL
∧
W
∈
H
∧
X
∈
B
∧
X
≤
˙
W
∧
Y
∈
B
∧
¬
Y
≤
˙
W
∧
I
⁡
X
⊆
I
⁡
Y
→
X
≤
˙
Y