Metamath Proof Explorer


Theorem dihord5a

Description: Part of proof that isomorphism H is order-preserving . (Contributed by NM, 7-Mar-2014)

Ref Expression
Hypotheses dihord.b B = Base K
dihord.l ˙ = K
dihord.h H = LHyp K
dihord.i I = DIsoH K W
Assertion dihord5a K HL W H X B X ˙ W Y B ¬ Y ˙ W I X I Y X ˙ Y

Proof

Step Hyp Ref Expression
1 dihord.b B = Base K
2 dihord.l ˙ = K
3 dihord.h H = LHyp K
4 dihord.i I = DIsoH K W
5 eqid join K = join K
6 eqid meet K = meet K
7 eqid Atoms K = Atoms K
8 eqid DVecH K W = DVecH K W
9 eqid LSSum DVecH K W = LSSum DVecH K W
10 1 2 3 5 6 7 8 9 4 dihord5apre K HL W H X B X ˙ W Y B ¬ Y ˙ W I X I Y X ˙ Y