Metamath Proof Explorer


Theorem dihord5a

Description: Part of proof that isomorphism H is order-preserving . (Contributed by NM, 7-Mar-2014)

Ref Expression
Hypotheses dihord.b
|- B = ( Base ` K )
dihord.l
|- .<_ = ( le ` K )
dihord.h
|- H = ( LHyp ` K )
dihord.i
|- I = ( ( DIsoH ` K ) ` W )
Assertion dihord5a
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) /\ ( Y e. B /\ -. Y .<_ W ) ) /\ ( I ` X ) C_ ( I ` Y ) ) -> X .<_ Y )

Proof

Step Hyp Ref Expression
1 dihord.b
 |-  B = ( Base ` K )
2 dihord.l
 |-  .<_ = ( le ` K )
3 dihord.h
 |-  H = ( LHyp ` K )
4 dihord.i
 |-  I = ( ( DIsoH ` K ) ` W )
5 eqid
 |-  ( join ` K ) = ( join ` K )
6 eqid
 |-  ( meet ` K ) = ( meet ` K )
7 eqid
 |-  ( Atoms ` K ) = ( Atoms ` K )
8 eqid
 |-  ( ( DVecH ` K ) ` W ) = ( ( DVecH ` K ) ` W )
9 eqid
 |-  ( LSSum ` ( ( DVecH ` K ) ` W ) ) = ( LSSum ` ( ( DVecH ` K ) ` W ) )
10 1 2 3 5 6 7 8 9 4 dihord5apre
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) /\ ( Y e. B /\ -. Y .<_ W ) ) /\ ( I ` X ) C_ ( I ` Y ) ) -> X .<_ Y )