| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dihord.b |
|- B = ( Base ` K ) |
| 2 |
|
dihord.l |
|- .<_ = ( le ` K ) |
| 3 |
|
dihord.h |
|- H = ( LHyp ` K ) |
| 4 |
|
dihord.i |
|- I = ( ( DIsoH ` K ) ` W ) |
| 5 |
|
eqid |
|- ( join ` K ) = ( join ` K ) |
| 6 |
|
eqid |
|- ( meet ` K ) = ( meet ` K ) |
| 7 |
|
eqid |
|- ( Atoms ` K ) = ( Atoms ` K ) |
| 8 |
|
eqid |
|- ( ( DVecH ` K ) ` W ) = ( ( DVecH ` K ) ` W ) |
| 9 |
|
eqid |
|- ( LSSum ` ( ( DVecH ` K ) ` W ) ) = ( LSSum ` ( ( DVecH ` K ) ` W ) ) |
| 10 |
1 2 3 5 6 7 8 9 4
|
dihord5apre |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) /\ ( Y e. B /\ -. Y .<_ W ) ) /\ ( I ` X ) C_ ( I ` Y ) ) -> X .<_ Y ) |